心肌细胞Nrf2缺乏加剧缺血性视网膜病变的病理性新生血管。

IF 7.4 1区 医学 Q1 HEMATOLOGY
Zhenhua Xu, Lingli Zhou, Jie Wang, Hongkwan Cho, Yingxue Cao, Le Shi, Shirley Wu, Yangyiran Xie, Jiang Qian, Elia J Duh
{"title":"心肌细胞Nrf2缺乏加剧缺血性视网膜病变的病理性新生血管。","authors":"Zhenhua Xu, Lingli Zhou, Jie Wang, Hongkwan Cho, Yingxue Cao, Le Shi, Shirley Wu, Yangyiran Xie, Jiang Qian, Elia J Duh","doi":"10.1161/ATVBAHA.125.323301","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Müller cells are the major retinal glial cell type and pivotal regulators of pathological neovascularization in ischemic retinopathy. There is great interest in identifying factors that govern Müller cells in vascular regulation. Nrf2 (NF-E2-related factor 2) plays a major protective role in regulating oxidative stress and inflammation. Our group previously discovered that both global and neuroretinal Nrf2 deficiency suppress retinal revascularization and promote pathological neovascularization in a mouse model of oxygen-induced retinopathy. Here, we investigate the cell-intrinsic role of Nrf2 in Müller cells on retinal angiogenesis.</p><p><strong>Methods: </strong>The role of Müller cell Nrf2 in retinal angiogenesis was investigated in cell culture and the mouse oxygen-induced retinopathy model. Human retinal endothelial cells were cocultured with primary Müller cells transfected with Nrf2 small-interference RNA. Müller cell-specific Nrf2 knockout mice were subjected to oxygen-induced retinopathy. RNA-seq analysis of a Müller cell-specific RiboTag transcriptome was conducted in wild-type and Nrf2-deficient Müller cells.</p><p><strong>Results: </strong>Silencing Nrf2 in primary Müller cells increased angiogenic activity in retinal endothelial cells. Müller cell-specific Nrf2 deficiency exacerbated pathological neovascularization in oxygen-induced retinopathy, associated with increased Müller cell gliosis and upregulation of retinal Tnfα (tumor necrosis factor alpha). Müller cell Nrf2 deficiency resulted in dysregulation of multiple genes involved in acute-phase response, inflammation, and angiogenesis, including increased expression of <i>Lcn2</i> (lipocalin-2) and <i>Fgf2</i>, both of which promoted angiogenesis in human retinal endothelial cells. Blocking LCN2 with a neutralizing antibody attenuated pathological neovascularization and vaso-obliteration, suggesting LCN2 is a key mediator of aberrant angiogenic response in Müller cell-specific Nrf2 deficiency.</p><p><strong>Conclusions: </strong>Nrf2 in Müller cells plays an integral protective role in modulating retinal angiogenesis and inflammatory responses in ischemic retinopathy. Nrf2 is an important regulator of Müller cell state in retinal ischemia and governs the Müller cell transcriptional program, including LCN2, a novel regulator of angiogenesis. This highlights pharmacological activation of Nrf2 as a therapeutic strategy for pathological neovascularization in ischemic retinopathy.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nrf2 Deficiency in Müller Cells Exacerbates Pathological Neovascularization in Ischemic Retinopathy.\",\"authors\":\"Zhenhua Xu, Lingli Zhou, Jie Wang, Hongkwan Cho, Yingxue Cao, Le Shi, Shirley Wu, Yangyiran Xie, Jiang Qian, Elia J Duh\",\"doi\":\"10.1161/ATVBAHA.125.323301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Müller cells are the major retinal glial cell type and pivotal regulators of pathological neovascularization in ischemic retinopathy. There is great interest in identifying factors that govern Müller cells in vascular regulation. Nrf2 (NF-E2-related factor 2) plays a major protective role in regulating oxidative stress and inflammation. Our group previously discovered that both global and neuroretinal Nrf2 deficiency suppress retinal revascularization and promote pathological neovascularization in a mouse model of oxygen-induced retinopathy. Here, we investigate the cell-intrinsic role of Nrf2 in Müller cells on retinal angiogenesis.</p><p><strong>Methods: </strong>The role of Müller cell Nrf2 in retinal angiogenesis was investigated in cell culture and the mouse oxygen-induced retinopathy model. Human retinal endothelial cells were cocultured with primary Müller cells transfected with Nrf2 small-interference RNA. Müller cell-specific Nrf2 knockout mice were subjected to oxygen-induced retinopathy. RNA-seq analysis of a Müller cell-specific RiboTag transcriptome was conducted in wild-type and Nrf2-deficient Müller cells.</p><p><strong>Results: </strong>Silencing Nrf2 in primary Müller cells increased angiogenic activity in retinal endothelial cells. Müller cell-specific Nrf2 deficiency exacerbated pathological neovascularization in oxygen-induced retinopathy, associated with increased Müller cell gliosis and upregulation of retinal Tnfα (tumor necrosis factor alpha). Müller cell Nrf2 deficiency resulted in dysregulation of multiple genes involved in acute-phase response, inflammation, and angiogenesis, including increased expression of <i>Lcn2</i> (lipocalin-2) and <i>Fgf2</i>, both of which promoted angiogenesis in human retinal endothelial cells. Blocking LCN2 with a neutralizing antibody attenuated pathological neovascularization and vaso-obliteration, suggesting LCN2 is a key mediator of aberrant angiogenic response in Müller cell-specific Nrf2 deficiency.</p><p><strong>Conclusions: </strong>Nrf2 in Müller cells plays an integral protective role in modulating retinal angiogenesis and inflammatory responses in ischemic retinopathy. Nrf2 is an important regulator of Müller cell state in retinal ischemia and governs the Müller cell transcriptional program, including LCN2, a novel regulator of angiogenesis. This highlights pharmacological activation of Nrf2 as a therapeutic strategy for pathological neovascularization in ischemic retinopathy.</p>\",\"PeriodicalId\":8401,\"journal\":{\"name\":\"Arteriosclerosis, Thrombosis, and Vascular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arteriosclerosis, Thrombosis, and Vascular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/ATVBAHA.125.323301\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.125.323301","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:网膜上皮细胞是缺血性视网膜病变中主要的视网膜胶质细胞类型,是病理性新生血管形成的关键调节因子。在血管调节中,有很大的兴趣在确定控制脉管细胞的因素。Nrf2 (nf - e2相关因子2)在调节氧化应激和炎症中起重要的保护作用。本课课组在氧诱导视网膜病变小鼠模型中发现,Nrf2缺乏症和神经视网膜Nrf2缺乏症均可抑制视网膜血运重建并促进病理性新生血管的形成。在这里,我们研究Nrf2在 ller细胞中对视网膜血管生成的细胞内在作用。方法:通过细胞培养和小鼠氧致视网膜病变模型,研究m ller细胞Nrf2在视网膜血管生成中的作用。将人视网膜内皮细胞与转染Nrf2小干扰RNA的原代 ller细胞共培养。 ller细胞特异性Nrf2敲除小鼠遭受氧诱导的视网膜病变。在野生型和nrf2缺陷的m ller细胞中进行了m ller细胞特异性RiboTag转录组的RNA-seq分析。结果:在原代 ller细胞中沉默Nrf2可增加视网膜内皮细胞的血管生成活性。在氧诱导的视网膜病变中,神经细胞特异性Nrf2缺乏加剧了病理性新生血管形成,与神经细胞胶质瘤增加和视网膜Tnfα(肿瘤坏死因子α)上调有关。ller细胞Nrf2缺乏导致多个参与急性期反应、炎症和血管生成的基因失调,包括Lcn2 (lipocalin-2)和Fgf2的表达增加,两者都促进了人视网膜内皮细胞的血管生成。用中和抗体阻断LCN2可减轻病理性新生血管和血管闭塞,这表明LCN2是 ller细胞特异性Nrf2缺乏症异常血管生成反应的关键介质。结论:Nrf2在缺血性视网膜病变中调节视网膜血管生成和炎症反应中起着重要的保护作用。Nrf2是视网膜缺血时m ller细胞状态的重要调节因子,并调控m ller细胞转录程序,包括LCN2,一种新的血管生成调节因子。这突出了Nrf2的药理激活作为缺血性视网膜病变病理性新生血管的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nrf2 Deficiency in Müller Cells Exacerbates Pathological Neovascularization in Ischemic Retinopathy.

Background: Müller cells are the major retinal glial cell type and pivotal regulators of pathological neovascularization in ischemic retinopathy. There is great interest in identifying factors that govern Müller cells in vascular regulation. Nrf2 (NF-E2-related factor 2) plays a major protective role in regulating oxidative stress and inflammation. Our group previously discovered that both global and neuroretinal Nrf2 deficiency suppress retinal revascularization and promote pathological neovascularization in a mouse model of oxygen-induced retinopathy. Here, we investigate the cell-intrinsic role of Nrf2 in Müller cells on retinal angiogenesis.

Methods: The role of Müller cell Nrf2 in retinal angiogenesis was investigated in cell culture and the mouse oxygen-induced retinopathy model. Human retinal endothelial cells were cocultured with primary Müller cells transfected with Nrf2 small-interference RNA. Müller cell-specific Nrf2 knockout mice were subjected to oxygen-induced retinopathy. RNA-seq analysis of a Müller cell-specific RiboTag transcriptome was conducted in wild-type and Nrf2-deficient Müller cells.

Results: Silencing Nrf2 in primary Müller cells increased angiogenic activity in retinal endothelial cells. Müller cell-specific Nrf2 deficiency exacerbated pathological neovascularization in oxygen-induced retinopathy, associated with increased Müller cell gliosis and upregulation of retinal Tnfα (tumor necrosis factor alpha). Müller cell Nrf2 deficiency resulted in dysregulation of multiple genes involved in acute-phase response, inflammation, and angiogenesis, including increased expression of Lcn2 (lipocalin-2) and Fgf2, both of which promoted angiogenesis in human retinal endothelial cells. Blocking LCN2 with a neutralizing antibody attenuated pathological neovascularization and vaso-obliteration, suggesting LCN2 is a key mediator of aberrant angiogenic response in Müller cell-specific Nrf2 deficiency.

Conclusions: Nrf2 in Müller cells plays an integral protective role in modulating retinal angiogenesis and inflammatory responses in ischemic retinopathy. Nrf2 is an important regulator of Müller cell state in retinal ischemia and governs the Müller cell transcriptional program, including LCN2, a novel regulator of angiogenesis. This highlights pharmacological activation of Nrf2 as a therapeutic strategy for pathological neovascularization in ischemic retinopathy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信