基于高级图像分析的湿度控制下盐晶体的形态特征。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Sanam Pudasaini, , , Amrutha S. V., , , Oliver Steinbock*, , and , Beni B. Dangi*, 
{"title":"基于高级图像分析的湿度控制下盐晶体的形态特征。","authors":"Sanam Pudasaini,&nbsp;, ,&nbsp;Amrutha S.\r\nV.,&nbsp;, ,&nbsp;Oliver Steinbock*,&nbsp;, and ,&nbsp;Beni B. Dangi*,&nbsp;","doi":"10.1021/acs.jpcb.5c04762","DOIUrl":null,"url":null,"abstract":"<p >We designed, fabricated, and utilized a humidity control chamber to investigate how controlled relative humidity (RH) affects crystallization patterns of two different salts; sodium chloride (NaCl) and ammonium chloride (NH<sub>4</sub>Cl) on glass slides. We also performed high-resolution imaging and MATLAB-based analysis to extract morphological and textural features of dried salt deposits, which were then assessed using Principal Component Analysis (PCA) technique. Results showed that humidity significantly impacted drying times and crystal morphologies. NH<sub>4</sub>Cl formed dendritic structures that grew more complex with higher humidity, while NaCl produced cubic/hopper crystals, whose size and aggregation varied with humidity. PCA analysis showed humidity-specific patterns, with NH<sub>4</sub>Cl displaying greater sensitivity. Our results demonstrate that the controlled humidity systematically alters salt crystallization dynamics, and advanced image analysis can precisely quantify these morphological signatures. Deep learning neural network models predict the correct salts from their image morphologies with over 97% accuracy.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 39","pages":"10184–10192"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological Signatures of Salt Crystals under Controlled Humidity Using Advanced Image Analysis\",\"authors\":\"Sanam Pudasaini,&nbsp;, ,&nbsp;Amrutha S.\\r\\nV.,&nbsp;, ,&nbsp;Oliver Steinbock*,&nbsp;, and ,&nbsp;Beni B. Dangi*,&nbsp;\",\"doi\":\"10.1021/acs.jpcb.5c04762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We designed, fabricated, and utilized a humidity control chamber to investigate how controlled relative humidity (RH) affects crystallization patterns of two different salts; sodium chloride (NaCl) and ammonium chloride (NH<sub>4</sub>Cl) on glass slides. We also performed high-resolution imaging and MATLAB-based analysis to extract morphological and textural features of dried salt deposits, which were then assessed using Principal Component Analysis (PCA) technique. Results showed that humidity significantly impacted drying times and crystal morphologies. NH<sub>4</sub>Cl formed dendritic structures that grew more complex with higher humidity, while NaCl produced cubic/hopper crystals, whose size and aggregation varied with humidity. PCA analysis showed humidity-specific patterns, with NH<sub>4</sub>Cl displaying greater sensitivity. Our results demonstrate that the controlled humidity systematically alters salt crystallization dynamics, and advanced image analysis can precisely quantify these morphological signatures. Deep learning neural network models predict the correct salts from their image morphologies with over 97% accuracy.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 39\",\"pages\":\"10184–10192\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c04762\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c04762","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们设计、制造并使用了一个湿度控制室来研究受控相对湿度(RH)如何影响两种不同盐的结晶模式;玻片上的氯化钠(NaCl)和氯化铵(NH4Cl)。我们还进行了高分辨率成像和基于matlab的分析,以提取干盐沉积物的形态和纹理特征,然后使用主成分分析(PCA)技术对其进行评估。结果表明,湿度显著影响干燥时间和晶体形态。NH4Cl形成的枝晶结构随着湿度的增加而变得更加复杂,而NaCl形成的立方/漏斗状晶体,其大小和聚集度随湿度的增加而变化。PCA分析显示湿度特异性模式,NH4Cl表现出更大的敏感性。我们的研究结果表明,湿度控制系统地改变了盐的结晶动力学,先进的图像分析可以精确地量化这些形态特征。深度学习神经网络模型从图像形态中预测正确的盐,准确率超过97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morphological Signatures of Salt Crystals under Controlled Humidity Using Advanced Image Analysis

Morphological Signatures of Salt Crystals under Controlled Humidity Using Advanced Image Analysis

We designed, fabricated, and utilized a humidity control chamber to investigate how controlled relative humidity (RH) affects crystallization patterns of two different salts; sodium chloride (NaCl) and ammonium chloride (NH4Cl) on glass slides. We also performed high-resolution imaging and MATLAB-based analysis to extract morphological and textural features of dried salt deposits, which were then assessed using Principal Component Analysis (PCA) technique. Results showed that humidity significantly impacted drying times and crystal morphologies. NH4Cl formed dendritic structures that grew more complex with higher humidity, while NaCl produced cubic/hopper crystals, whose size and aggregation varied with humidity. PCA analysis showed humidity-specific patterns, with NH4Cl displaying greater sensitivity. Our results demonstrate that the controlled humidity systematically alters salt crystallization dynamics, and advanced image analysis can precisely quantify these morphological signatures. Deep learning neural network models predict the correct salts from their image morphologies with over 97% accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信