人工智能在广谱药物相互作用预测中的应用:系统综述

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nour H. Marzouk, Sahar Selim, Mustafa Elattar, Mai S. Mabrouk, Mohamed Mysara
{"title":"人工智能在广谱药物相互作用预测中的应用:系统综述","authors":"Nour H. Marzouk,&nbsp;Sahar Selim,&nbsp;Mustafa Elattar,&nbsp;Mai S. Mabrouk,&nbsp;Mohamed Mysara","doi":"10.1186/s13321-025-01093-2","DOIUrl":null,"url":null,"abstract":"<div><p>In drug development, managing interactions such as drug–drug, drug–disease, and drug–nutrient is critical for ensuring the safety and efficacy of pharmacological treatments. These interactions often overlap, forming a complex, interconnected landscape that necessitates accurate prediction to improve patient outcomes and support evidence-based care. Recent advances in artificial intelligence (AI), powered by large-scale datasets (e.g., DrugBank, TWOSIDES, SIDER), have significantly enhanced interaction prediction. Machine learning, deep learning, and graph-based models show great promise, but challenges persist, including data imbalance, noisy sources, Limited explainability, and underrepresentation of certain types of interactions. This systematic review of 147 studies (2018–2024) is the first to comprehensively map AI applications across major interaction types. We present a detailed taxonomy of models and datasets, emphasizing the growing roles of large language models and knowledge graphs in overcoming key limitations. Their integration—alongside explainable AI tools—enhances transparency, paving the way for AI-driven systems that proactively mitigate adverse interactions. By identifying the most promising approaches and critical research gaps, this review lays the groundwork for advancing more robust, interpretable, and personalized models for drug interaction prediction.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01093-2","citationCount":"0","resultStr":"{\"title\":\"A comprehensive landscape of AI applications in broad-spectrum drug interaction prediction: a systematic review\",\"authors\":\"Nour H. Marzouk,&nbsp;Sahar Selim,&nbsp;Mustafa Elattar,&nbsp;Mai S. Mabrouk,&nbsp;Mohamed Mysara\",\"doi\":\"10.1186/s13321-025-01093-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In drug development, managing interactions such as drug–drug, drug–disease, and drug–nutrient is critical for ensuring the safety and efficacy of pharmacological treatments. These interactions often overlap, forming a complex, interconnected landscape that necessitates accurate prediction to improve patient outcomes and support evidence-based care. Recent advances in artificial intelligence (AI), powered by large-scale datasets (e.g., DrugBank, TWOSIDES, SIDER), have significantly enhanced interaction prediction. Machine learning, deep learning, and graph-based models show great promise, but challenges persist, including data imbalance, noisy sources, Limited explainability, and underrepresentation of certain types of interactions. This systematic review of 147 studies (2018–2024) is the first to comprehensively map AI applications across major interaction types. We present a detailed taxonomy of models and datasets, emphasizing the growing roles of large language models and knowledge graphs in overcoming key limitations. Their integration—alongside explainable AI tools—enhances transparency, paving the way for AI-driven systems that proactively mitigate adverse interactions. By identifying the most promising approaches and critical research gaps, this review lays the groundwork for advancing more robust, interpretable, and personalized models for drug interaction prediction.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01093-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01093-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01093-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在药物开发中,管理药物-药物、药物-疾病和药物-营养等相互作用对于确保药物治疗的安全性和有效性至关重要。这些相互作用经常重叠,形成一个复杂的,相互关联的景观,需要准确的预测,以改善患者的结果和支持循证护理。人工智能(AI)的最新进展,由大规模数据集(例如,DrugBank, TWOSIDES, SIDER)提供支持,显著增强了交互预测。机器学习、深度学习和基于图的模型显示出巨大的前景,但挑战仍然存在,包括数据不平衡、噪声源、有限的可解释性以及某些类型交互的代表性不足。这项对147项研究(2018-2024)的系统回顾是第一个全面描绘主要交互类型的人工智能应用的研究。我们提出了模型和数据集的详细分类,强调了大型语言模型和知识图在克服关键限制方面日益增长的作用。它们与可解释的人工智能工具相结合,提高了透明度,为人工智能驱动的系统主动减轻不利的相互作用铺平了道路。通过确定最有希望的方法和关键的研究差距,本综述为推进更稳健、可解释和个性化的药物相互作用预测模型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive landscape of AI applications in broad-spectrum drug interaction prediction: a systematic review

In drug development, managing interactions such as drug–drug, drug–disease, and drug–nutrient is critical for ensuring the safety and efficacy of pharmacological treatments. These interactions often overlap, forming a complex, interconnected landscape that necessitates accurate prediction to improve patient outcomes and support evidence-based care. Recent advances in artificial intelligence (AI), powered by large-scale datasets (e.g., DrugBank, TWOSIDES, SIDER), have significantly enhanced interaction prediction. Machine learning, deep learning, and graph-based models show great promise, but challenges persist, including data imbalance, noisy sources, Limited explainability, and underrepresentation of certain types of interactions. This systematic review of 147 studies (2018–2024) is the first to comprehensively map AI applications across major interaction types. We present a detailed taxonomy of models and datasets, emphasizing the growing roles of large language models and knowledge graphs in overcoming key limitations. Their integration—alongside explainable AI tools—enhances transparency, paving the way for AI-driven systems that proactively mitigate adverse interactions. By identifying the most promising approaches and critical research gaps, this review lays the groundwork for advancing more robust, interpretable, and personalized models for drug interaction prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信