利用机器学习和二维半变异图对沙丘上的波纹模式进行分割和表征

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Lucie A. Delobel , David Moffat , Emma Tebbs , Andreas C.W. Baas
{"title":"利用机器学习和二维半变异图对沙丘上的波纹模式进行分割和表征","authors":"Lucie A. Delobel ,&nbsp;David Moffat ,&nbsp;Emma Tebbs ,&nbsp;Andreas C.W. Baas","doi":"10.1016/j.rse.2025.115031","DOIUrl":null,"url":null,"abstract":"<div><div>Sand ripples, shaped by fluid flow like wind or water, are common on dunes on Earth and Mars. Their patterns reveal local transport conditions, offering insights into wind regimes where direct observations are lacking. Since manual mapping is slow and subjective, automated methods are essential for consistent large-scale analysis. This study presents two novel and complementary methods for mapping ripple patterns on Martian dunes using high-resolution imagery: a U-Net model for pattern classification and a 2D semi-variogram for measuring ripple spacing and orientation. Tested on 42 barchan dunes across six Martian regions, the U-Net showed reliable ripple classification (F1-score 79 %), while the variogram method achieved high accuracy for ripple spacing (R<sup>2</sup> = 0.78) and orientation (R<sup>2</sup> = 0.98). Together, these approaches enable efficient, large-scale analysis of ripples for sediment transport on any planetary surface and can be applied to other patterned features.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"331 ","pages":"Article 115031"},"PeriodicalIF":11.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmenting and characterising ripple patterns on sand dunes using machine learning and 2D semi-variogram\",\"authors\":\"Lucie A. Delobel ,&nbsp;David Moffat ,&nbsp;Emma Tebbs ,&nbsp;Andreas C.W. Baas\",\"doi\":\"10.1016/j.rse.2025.115031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sand ripples, shaped by fluid flow like wind or water, are common on dunes on Earth and Mars. Their patterns reveal local transport conditions, offering insights into wind regimes where direct observations are lacking. Since manual mapping is slow and subjective, automated methods are essential for consistent large-scale analysis. This study presents two novel and complementary methods for mapping ripple patterns on Martian dunes using high-resolution imagery: a U-Net model for pattern classification and a 2D semi-variogram for measuring ripple spacing and orientation. Tested on 42 barchan dunes across six Martian regions, the U-Net showed reliable ripple classification (F1-score 79 %), while the variogram method achieved high accuracy for ripple spacing (R<sup>2</sup> = 0.78) and orientation (R<sup>2</sup> = 0.98). Together, these approaches enable efficient, large-scale analysis of ripples for sediment transport on any planetary surface and can be applied to other patterned features.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"331 \",\"pages\":\"Article 115031\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725004353\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725004353","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由风或水等流体流动形成的沙纹在地球和火星的沙丘上很常见。它们的模式揭示了当地的运输状况,为缺乏直接观测的风力状况提供了见解。由于手工映射是缓慢和主观的,自动化方法对于一致的大规模分析是必不可少的。本研究提出了两种新的互补方法,用于利用高分辨率图像绘制火星沙丘上的波纹图案:用于图案分类的U-Net模型和用于测量波纹间距和方向的二维半变异函数。在火星6个地区的42个新月形沙丘上进行的测试表明,U-Net对波纹的分类可靠(f1得分为79%),而变异函数法对波纹间距(R2 = 0.78)和方向(R2 = 0.98)的分类精度较高。总之,这些方法能够有效地、大规模地分析任何行星表面沉积物运输的波纹,并可应用于其他模式特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmenting and characterising ripple patterns on sand dunes using machine learning and 2D semi-variogram
Sand ripples, shaped by fluid flow like wind or water, are common on dunes on Earth and Mars. Their patterns reveal local transport conditions, offering insights into wind regimes where direct observations are lacking. Since manual mapping is slow and subjective, automated methods are essential for consistent large-scale analysis. This study presents two novel and complementary methods for mapping ripple patterns on Martian dunes using high-resolution imagery: a U-Net model for pattern classification and a 2D semi-variogram for measuring ripple spacing and orientation. Tested on 42 barchan dunes across six Martian regions, the U-Net showed reliable ripple classification (F1-score 79 %), while the variogram method achieved high accuracy for ripple spacing (R2 = 0.78) and orientation (R2 = 0.98). Together, these approaches enable efficient, large-scale analysis of ripples for sediment transport on any planetary surface and can be applied to other patterned features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信