拟南芥RMR的RING-finger结构域在高尔基转运中起E3连接酶的作用。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shuai Chen,Yonglun Zeng,Hiu Yan Wong,Yihong Chen,Lei Yang,Fang Luo,Caiji Gao,Liwen Jiang,Kam-Bo Wong
{"title":"拟南芥RMR的RING-finger结构域在高尔基转运中起E3连接酶的作用。","authors":"Shuai Chen,Yonglun Zeng,Hiu Yan Wong,Yihong Chen,Lei Yang,Fang Luo,Caiji Gao,Liwen Jiang,Kam-Bo Wong","doi":"10.1016/j.jbc.2025.110721","DOIUrl":null,"url":null,"abstract":"Receptor-homology-transmembrane-RING-H2 (RMR) sorting receptors are essential for directing soluble cargo proteins to protein storage vacuoles in plants. These type I integral membrane proteins comprise a single transmembrane domain, an N-terminal lumenal region containing a protease-associated domain for cargo recognition, and a C-terminal cytoplasmic region (CT) with a Really-Interesting-New-Gene-H2 (RING-H2) domain. Here, we determined the crystal structure of the RING-H2 domain of Arabidopsis RMR isoform-1 (AtRMR1-RING), where the conserved C3H2C3 motif coordinates two Zn ions, a feature typical of RING-type E3 ligases. AtRMR1-RING was shown to interact with Arabidopsis E2 ubiquitin-conjugating enzyme, and exhibits E3 ligase activity in an in vitro ubiquitination assay. Biochemical analysis reveals that I234Y substitution disrupted the E2/E3 interaction and greatly reduced E3 ligase activity. Furthermore, we showed that the conserved RING-H2 domains of AtRMR isoform 2, 3 and 4 are also E3 ligases. Inactivation of E3 ligase activity by the I234Y mutation resulted in Golgi retention of AtRMR1-CT and AtRMR2. These findings suggest that the E3 ligase activity is essential for post-Golgi trafficking of RMR receptors, providing new insights into receptor-mediated protein sorting in plants.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"1 1","pages":"110721"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The RING-finger domain of Arabidopsis RMR functions as an E3 ligase essential for post-Golgi trafficking.\",\"authors\":\"Shuai Chen,Yonglun Zeng,Hiu Yan Wong,Yihong Chen,Lei Yang,Fang Luo,Caiji Gao,Liwen Jiang,Kam-Bo Wong\",\"doi\":\"10.1016/j.jbc.2025.110721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Receptor-homology-transmembrane-RING-H2 (RMR) sorting receptors are essential for directing soluble cargo proteins to protein storage vacuoles in plants. These type I integral membrane proteins comprise a single transmembrane domain, an N-terminal lumenal region containing a protease-associated domain for cargo recognition, and a C-terminal cytoplasmic region (CT) with a Really-Interesting-New-Gene-H2 (RING-H2) domain. Here, we determined the crystal structure of the RING-H2 domain of Arabidopsis RMR isoform-1 (AtRMR1-RING), where the conserved C3H2C3 motif coordinates two Zn ions, a feature typical of RING-type E3 ligases. AtRMR1-RING was shown to interact with Arabidopsis E2 ubiquitin-conjugating enzyme, and exhibits E3 ligase activity in an in vitro ubiquitination assay. Biochemical analysis reveals that I234Y substitution disrupted the E2/E3 interaction and greatly reduced E3 ligase activity. Furthermore, we showed that the conserved RING-H2 domains of AtRMR isoform 2, 3 and 4 are also E3 ligases. Inactivation of E3 ligase activity by the I234Y mutation resulted in Golgi retention of AtRMR1-CT and AtRMR2. These findings suggest that the E3 ligase activity is essential for post-Golgi trafficking of RMR receptors, providing new insights into receptor-mediated protein sorting in plants.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"1 1\",\"pages\":\"110721\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110721\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110721","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

受体同源跨膜环h2 (receptor -homology-trans - membrane- ring - h2, RMR)分选受体是植物中将可溶性货物蛋白导向蛋白质储存液泡的关键。这些I型整体膜蛋白包括一个单一的跨膜结构域,一个n端管腔区域包含一个用于货物识别的蛋白酶相关结构域,以及一个c端细胞质区域(CT)包含一个真正有趣的新基因- h2 (RING-H2)结构域。在这里,我们确定了拟南芥RMR异构体-1 (AtRMR1-RING)的RING-H2结构域的晶体结构,其中保守的C3H2C3基序配位两个Zn离子,这是ring型E3连接酶的典型特征。在体外泛素化实验中,AtRMR1-RING与拟南芥E2泛素结合酶相互作用,并表现出E3连接酶活性。生化分析表明,I234Y取代破坏了E2/E3相互作用,大大降低了E3连接酶的活性。此外,我们发现AtRMR异构体2、3和4的保守环h2结构域也是E3连接酶。I234Y突变导致E3连接酶活性失活,导致AtRMR1-CT和AtRMR2的高尔基体保留。这些发现表明,E3连接酶活性对于RMR受体的高尔基转运至关重要,为植物中受体介导的蛋白质分选提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The RING-finger domain of Arabidopsis RMR functions as an E3 ligase essential for post-Golgi trafficking.
Receptor-homology-transmembrane-RING-H2 (RMR) sorting receptors are essential for directing soluble cargo proteins to protein storage vacuoles in plants. These type I integral membrane proteins comprise a single transmembrane domain, an N-terminal lumenal region containing a protease-associated domain for cargo recognition, and a C-terminal cytoplasmic region (CT) with a Really-Interesting-New-Gene-H2 (RING-H2) domain. Here, we determined the crystal structure of the RING-H2 domain of Arabidopsis RMR isoform-1 (AtRMR1-RING), where the conserved C3H2C3 motif coordinates two Zn ions, a feature typical of RING-type E3 ligases. AtRMR1-RING was shown to interact with Arabidopsis E2 ubiquitin-conjugating enzyme, and exhibits E3 ligase activity in an in vitro ubiquitination assay. Biochemical analysis reveals that I234Y substitution disrupted the E2/E3 interaction and greatly reduced E3 ligase activity. Furthermore, we showed that the conserved RING-H2 domains of AtRMR isoform 2, 3 and 4 are also E3 ligases. Inactivation of E3 ligase activity by the I234Y mutation resulted in Golgi retention of AtRMR1-CT and AtRMR2. These findings suggest that the E3 ligase activity is essential for post-Golgi trafficking of RMR receptors, providing new insights into receptor-mediated protein sorting in plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信