局部差分隐私下的优化稀疏向量聚合

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Ellen Z. Zhang;Yunguo Guan;Rongxing Lu;Harry Zhang
{"title":"局部差分隐私下的优化稀疏向量聚合","authors":"Ellen Z. Zhang;Yunguo Guan;Rongxing Lu;Harry Zhang","doi":"10.1109/TIFS.2025.3611115","DOIUrl":null,"url":null,"abstract":"In crowdsourcing applications, gathering and analyzing users’ strong positive <xref>(1)</xref> or negative (−1) reactions to a large number of items is crucial for improving service quality, particularly in recommendation systems. However, protecting users’ privacy while handling diverse sparse patterns in contexts with a large dimension size <inline-formula> <tex-math>$d$ </tex-math></inline-formula> poses significant challenges for efficient and privacy-preserving data aggregation. To address these challenges, in this paper, we propose an optimized <inline-formula> <tex-math>$k$ </tex-math></inline-formula>-sparse vector mean estimation scheme under Local Differential Privacy (LDP), ensuring that each user’s entire set of up to <inline-formula> <tex-math>$k$ </tex-math></inline-formula> private values from <inline-formula> <tex-math>$\\{-1, 1\\}$ </tex-math></inline-formula> satisfies <inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>-LDP. Specifically, our proposed scheme employs a seed mining technique in conjunction with PRNG Randomizer, which allows users to send their data only once while enabling the server to accurately estimate any value’s mean in the domain. Our scheme achieves an asymptotically optimal per-coordinate error of <inline-formula> <tex-math>$O\\left ({{\\frac {1}{\\varepsilon \\sqrt {n}} }}\\right)$ </tex-math></inline-formula>, equivalent to that of a 1-sparse case, while also ensuring efficient communication costs. The communication cost remains at a minimal level of <inline-formula> <tex-math>$O(1)$ </tex-math></inline-formula> (only 2 bytes per user’s report) for smaller <inline-formula> <tex-math>$k$ </tex-math></inline-formula> values and scales to <inline-formula> <tex-math>$O(k)$ </tex-math></inline-formula> for larger <inline-formula> <tex-math>$k$ </tex-math></inline-formula>, due to efficient binning strategies. Extensive experimental results confirm that our results align with theoretical expectations, demonstrating that our scheme not only preserves user privacy but also ensures higher accuracy compared to other schemes.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"10246-10259"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Sparse Vector Aggregation Under Local Differential Privacy\",\"authors\":\"Ellen Z. Zhang;Yunguo Guan;Rongxing Lu;Harry Zhang\",\"doi\":\"10.1109/TIFS.2025.3611115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In crowdsourcing applications, gathering and analyzing users’ strong positive <xref>(1)</xref> or negative (−1) reactions to a large number of items is crucial for improving service quality, particularly in recommendation systems. However, protecting users’ privacy while handling diverse sparse patterns in contexts with a large dimension size <inline-formula> <tex-math>$d$ </tex-math></inline-formula> poses significant challenges for efficient and privacy-preserving data aggregation. To address these challenges, in this paper, we propose an optimized <inline-formula> <tex-math>$k$ </tex-math></inline-formula>-sparse vector mean estimation scheme under Local Differential Privacy (LDP), ensuring that each user’s entire set of up to <inline-formula> <tex-math>$k$ </tex-math></inline-formula> private values from <inline-formula> <tex-math>$\\\\{-1, 1\\\\}$ </tex-math></inline-formula> satisfies <inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>-LDP. Specifically, our proposed scheme employs a seed mining technique in conjunction with PRNG Randomizer, which allows users to send their data only once while enabling the server to accurately estimate any value’s mean in the domain. Our scheme achieves an asymptotically optimal per-coordinate error of <inline-formula> <tex-math>$O\\\\left ({{\\\\frac {1}{\\\\varepsilon \\\\sqrt {n}} }}\\\\right)$ </tex-math></inline-formula>, equivalent to that of a 1-sparse case, while also ensuring efficient communication costs. The communication cost remains at a minimal level of <inline-formula> <tex-math>$O(1)$ </tex-math></inline-formula> (only 2 bytes per user’s report) for smaller <inline-formula> <tex-math>$k$ </tex-math></inline-formula> values and scales to <inline-formula> <tex-math>$O(k)$ </tex-math></inline-formula> for larger <inline-formula> <tex-math>$k$ </tex-math></inline-formula>, due to efficient binning strategies. Extensive experimental results confirm that our results align with theoretical expectations, demonstrating that our scheme not only preserves user privacy but also ensures higher accuracy compared to other schemes.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"10246-10259\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11168921/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11168921/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在众包应用中,收集和分析用户对大量项目强烈的正面(1)或负面(- 1)反应对于提高服务质量至关重要,尤其是在推荐系统中。然而,在处理大维度大小$d$的上下文中的各种稀疏模式的同时保护用户的隐私,对高效和保护隐私的数据聚合提出了重大挑战。为了解决这些挑战,在本文中,我们提出了一种优化的$k$ -稀疏向量均值估计方案,在局部差分隐私(LDP)下,确保每个用户来自$\{-1, 1\}$的多达$k$的私有值的整个集合满足$\varepsilon $ -LDP。具体来说,我们提出的方案采用种子挖掘技术与PRNG Randomizer相结合,允许用户仅发送一次数据,同时使服务器能够准确地估计域中任何值的平均值。我们的方案实现了一个渐进最优的每坐标误差$O\left ({{\frac {1}{\varepsilon \sqrt {n}} }}\right)$,相当于1-稀疏情况下的误差,同时也保证了有效的通信成本。对于较小的$k$值,通信成本保持在最低水平$O(1)$(每个用户的报告只有2字节),对于较大的$k$值,由于有效的分组策略,通信成本可以扩展到$O(k)$。大量的实验结果证实了我们的结果符合理论预期,表明我们的方案不仅保护了用户隐私,而且与其他方案相比确保了更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Sparse Vector Aggregation Under Local Differential Privacy
In crowdsourcing applications, gathering and analyzing users’ strong positive (1) or negative (−1) reactions to a large number of items is crucial for improving service quality, particularly in recommendation systems. However, protecting users’ privacy while handling diverse sparse patterns in contexts with a large dimension size $d$ poses significant challenges for efficient and privacy-preserving data aggregation. To address these challenges, in this paper, we propose an optimized $k$ -sparse vector mean estimation scheme under Local Differential Privacy (LDP), ensuring that each user’s entire set of up to $k$ private values from $\{-1, 1\}$ satisfies $\varepsilon $ -LDP. Specifically, our proposed scheme employs a seed mining technique in conjunction with PRNG Randomizer, which allows users to send their data only once while enabling the server to accurately estimate any value’s mean in the domain. Our scheme achieves an asymptotically optimal per-coordinate error of $O\left ({{\frac {1}{\varepsilon \sqrt {n}} }}\right)$ , equivalent to that of a 1-sparse case, while also ensuring efficient communication costs. The communication cost remains at a minimal level of $O(1)$ (only 2 bytes per user’s report) for smaller $k$ values and scales to $O(k)$ for larger $k$ , due to efficient binning strategies. Extensive experimental results confirm that our results align with theoretical expectations, demonstrating that our scheme not only preserves user privacy but also ensures higher accuracy compared to other schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信