PREXP:在Linux内核中发现和利用安全敏感对象

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Zuxin Chen;Yaowen Zheng;Hong Li;Siyuan Li;Weijie Wang;Dongliang Fang;Zhiqiang Shi;Limin Sun
{"title":"PREXP:在Linux内核中发现和利用安全敏感对象","authors":"Zuxin Chen;Yaowen Zheng;Hong Li;Siyuan Li;Weijie Wang;Dongliang Fang;Zhiqiang Shi;Limin Sun","doi":"10.1109/TIFS.2025.3611149","DOIUrl":null,"url":null,"abstract":"Security-Sensitive Objects (SSOs) are often critical components in the exploitation of Linux kernel memory corruption vulnerabilities. While existing research has advanced SSOs identification and classification, there remains a significant gap in systematically understanding how these objects can be effectively exploited in real-world security analysis. To address this challenge, we present PREXP, a novel approach to analyzing SSOs exploitability and automating the transformation of Proof-of-Concept (PoC) into exploitable states. Our approach encompasses three key techniques: (1) capability analysis and attribute modeling of vulnerable object (2) extraction and filtering of target SSOs and (3) automatically augmenting PoCs with SSO-specific code to create exploitation capabilities. To evaluate our approach, we tested our prototype on 30 public CVEs, successfully parsing vulnerable object in 22 cases (73.3%) and achieving accurate SSO matches in 18 (60.0%). PREXP outperformed state-of-the-art tools such as SCAVY and AlphaEXP in structure-matching, and enabled the generation of new Control Flow Hijacking Primitives (CFHPs) for 3 previously unexploited vulnerabilities, demonstrating its practical value in real-world exploit development.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"10146-10160"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREXP: Uncovering and Exploiting Security-Sensitive Objects in the Linux Kernel\",\"authors\":\"Zuxin Chen;Yaowen Zheng;Hong Li;Siyuan Li;Weijie Wang;Dongliang Fang;Zhiqiang Shi;Limin Sun\",\"doi\":\"10.1109/TIFS.2025.3611149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security-Sensitive Objects (SSOs) are often critical components in the exploitation of Linux kernel memory corruption vulnerabilities. While existing research has advanced SSOs identification and classification, there remains a significant gap in systematically understanding how these objects can be effectively exploited in real-world security analysis. To address this challenge, we present PREXP, a novel approach to analyzing SSOs exploitability and automating the transformation of Proof-of-Concept (PoC) into exploitable states. Our approach encompasses three key techniques: (1) capability analysis and attribute modeling of vulnerable object (2) extraction and filtering of target SSOs and (3) automatically augmenting PoCs with SSO-specific code to create exploitation capabilities. To evaluate our approach, we tested our prototype on 30 public CVEs, successfully parsing vulnerable object in 22 cases (73.3%) and achieving accurate SSO matches in 18 (60.0%). PREXP outperformed state-of-the-art tools such as SCAVY and AlphaEXP in structure-matching, and enabled the generation of new Control Flow Hijacking Primitives (CFHPs) for 3 previously unexploited vulnerabilities, demonstrating its practical value in real-world exploit development.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"10146-10160\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11168893/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11168893/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

安全敏感对象(sso)通常是利用Linux内核内存损坏漏洞的关键组件。虽然现有的研究已经推进了sso的识别和分类,但在系统地理解如何在现实世界的安全分析中有效利用这些对象方面仍然存在重大差距。为了应对这一挑战,我们提出了PREXP,这是一种分析sso可利用性和自动将概念验证(PoC)转换为可利用状态的新方法。我们的方法包括三个关键技术:(1)脆弱对象的能力分析和属性建模;(2)目标sso的提取和过滤;(3)使用特定于sso的代码自动增加poc以创建利用能力。为了评估我们的方法,我们在30个公开cve上测试了我们的原型,成功解析了22个(73.3%)脆弱对象,并在18个(60.0%)中实现了准确的单点登录匹配。PREXP在结构匹配方面优于SCAVY和AlphaEXP等最先进的工具,并且能够为3个以前未被利用的漏洞生成新的控制流劫持原语(cfhp),展示了其在现实世界漏洞开发中的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREXP: Uncovering and Exploiting Security-Sensitive Objects in the Linux Kernel
Security-Sensitive Objects (SSOs) are often critical components in the exploitation of Linux kernel memory corruption vulnerabilities. While existing research has advanced SSOs identification and classification, there remains a significant gap in systematically understanding how these objects can be effectively exploited in real-world security analysis. To address this challenge, we present PREXP, a novel approach to analyzing SSOs exploitability and automating the transformation of Proof-of-Concept (PoC) into exploitable states. Our approach encompasses three key techniques: (1) capability analysis and attribute modeling of vulnerable object (2) extraction and filtering of target SSOs and (3) automatically augmenting PoCs with SSO-specific code to create exploitation capabilities. To evaluate our approach, we tested our prototype on 30 public CVEs, successfully parsing vulnerable object in 22 cases (73.3%) and achieving accurate SSO matches in 18 (60.0%). PREXP outperformed state-of-the-art tools such as SCAVY and AlphaEXP in structure-matching, and enabled the generation of new Control Flow Hijacking Primitives (CFHPs) for 3 previously unexploited vulnerabilities, demonstrating its practical value in real-world exploit development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信