对长循环锌-钒电池的定向锌剥离和抑制钒溶解的调节吸附中间亚稳态。

IF 16.9
Zixin Han, Zuyang Hu, Xiaolong Jiang, Haoxin Liu, Kai Bai, Jianlong Cong, Yufei Zhang, Wencheng Du, Minghui Ye, Yongchao Tang, Xiaoqing Liu, Zhipeng Wen, Cheng Chao Li
{"title":"对长循环锌-钒电池的定向锌剥离和抑制钒溶解的调节吸附中间亚稳态。","authors":"Zixin Han, Zuyang Hu, Xiaolong Jiang, Haoxin Liu, Kai Bai, Jianlong Cong, Yufei Zhang, Wencheng Du, Minghui Ye, Yongchao Tang, Xiaoqing Liu, Zhipeng Wen, Cheng Chao Li","doi":"10.1002/anie.202515085","DOIUrl":null,"url":null,"abstract":"<p><p>The metastable adsorbed intermediates formed during the lattice detachment of Zn atoms and V<sup>n</sup> <sup>+</sup> ions govern the reaction kinetics and interfacial morphology evolution during dissolution. Resultant inhomogeneous Zn stripping and progressive V dissolution synergistically promote dead Zn formation and cathode material degradation, substantially impeding the commercialization of Zn-V batteries. Here, to facilitate Zn tip-stripping electrochemistry and suppressed vanadium dissolution, a robust adhesion ionic liquid ([BVIM]Br) modified PAM gel electrolyte (PAM-IL) was strategically designed. Leveraging steric hindrance of polymer segments and the directional coordination of anions and cations, the PAM-IL electrolyte delocalizes charge accumulation and suppresses overstabilization of tip-localized complexes, thereby reversing the adsorption asymmetry behavior (ΔG<sub>ads-tip</sub> > ΔG<sub>ads-root</sub>) to achieve tip-targeted zinc stripping. Concurrently, strong ion-dipole interactions within PAM-IL elevate the activation barrier for V dissolution and combine with its butyl-functionalized hydrophobic moieties to impede water molecule penetration and suppress vanadium dissolution. Therefore, the as-prepared Zn||PAM-IL||NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries deliver a reversible capacity of 266.4 mAh g<sup>-1</sup> at 1 A g<sup>-1</sup> after 2000 cycles and retained a higher capacity retention (82.3%) after 250 cycles than aqueous electrolyte (28.1%) with extreme-low current density of 0.2 A g<sup>-1</sup>. Furthermore, the PAM-IL exhibits exceptional cycling stability over a wide temperature range, from 0 °C to 60 °C.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515085"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Adsorption Intermediate Metastability for Tip-Directed Zinc Stripping and Suppressed Vanadium Dissolution Toward Long-Cycling Zinc-Vanadium Batteries.\",\"authors\":\"Zixin Han, Zuyang Hu, Xiaolong Jiang, Haoxin Liu, Kai Bai, Jianlong Cong, Yufei Zhang, Wencheng Du, Minghui Ye, Yongchao Tang, Xiaoqing Liu, Zhipeng Wen, Cheng Chao Li\",\"doi\":\"10.1002/anie.202515085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metastable adsorbed intermediates formed during the lattice detachment of Zn atoms and V<sup>n</sup> <sup>+</sup> ions govern the reaction kinetics and interfacial morphology evolution during dissolution. Resultant inhomogeneous Zn stripping and progressive V dissolution synergistically promote dead Zn formation and cathode material degradation, substantially impeding the commercialization of Zn-V batteries. Here, to facilitate Zn tip-stripping electrochemistry and suppressed vanadium dissolution, a robust adhesion ionic liquid ([BVIM]Br) modified PAM gel electrolyte (PAM-IL) was strategically designed. Leveraging steric hindrance of polymer segments and the directional coordination of anions and cations, the PAM-IL electrolyte delocalizes charge accumulation and suppresses overstabilization of tip-localized complexes, thereby reversing the adsorption asymmetry behavior (ΔG<sub>ads-tip</sub> > ΔG<sub>ads-root</sub>) to achieve tip-targeted zinc stripping. Concurrently, strong ion-dipole interactions within PAM-IL elevate the activation barrier for V dissolution and combine with its butyl-functionalized hydrophobic moieties to impede water molecule penetration and suppress vanadium dissolution. Therefore, the as-prepared Zn||PAM-IL||NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries deliver a reversible capacity of 266.4 mAh g<sup>-1</sup> at 1 A g<sup>-1</sup> after 2000 cycles and retained a higher capacity retention (82.3%) after 250 cycles than aqueous electrolyte (28.1%) with extreme-low current density of 0.2 A g<sup>-1</sup>. Furthermore, the PAM-IL exhibits exceptional cycling stability over a wide temperature range, from 0 °C to 60 °C.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202515085\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Zn原子和Vn +离子晶格脱离过程中形成的亚稳吸附中间体控制了溶解过程中的反应动力学和界面形态演变。由此导致的不均匀锌剥离和V的逐渐溶解协同促进了死锌的形成和阴极材料的降解,极大地阻碍了锌-V电池的商业化。为了促进Zn的尖端剥离电化学,抑制钒的溶解,本文设计了一种强附附性离子液体([BVIM]Br)修饰的PAM凝胶电解质(PAM- il)。PAM-IL电解质利用聚合物片段的空间位阻和阴离子和阳离子的定向配位,使电荷积聚离域,抑制尖端定位配合物的过稳定,从而逆转吸附不对称行为(ΔGads-tip > ΔGads-root),实现尖端定向锌提离。同时,PAM-IL内部强烈的离子偶极相互作用提高了V溶解的激活屏障,并与其丁基功能化的疏水基团结合,阻碍水分子渗透,抑制钒的溶解。因此,制备的Zn||PAM-IL||NH4V4O10电池在1 a g-1条件下,经过2000次循环可提供266.4 mAh g-1的可逆容量,在250次循环后,其容量保持率(82.3%)高于0.2 a g-1极低电流密度的水电解质(28.1%)。此外,PAM-IL在0°C至60°C的宽温度范围内表现出优异的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating Adsorption Intermediate Metastability for Tip-Directed Zinc Stripping and Suppressed Vanadium Dissolution Toward Long-Cycling Zinc-Vanadium Batteries.

The metastable adsorbed intermediates formed during the lattice detachment of Zn atoms and Vn + ions govern the reaction kinetics and interfacial morphology evolution during dissolution. Resultant inhomogeneous Zn stripping and progressive V dissolution synergistically promote dead Zn formation and cathode material degradation, substantially impeding the commercialization of Zn-V batteries. Here, to facilitate Zn tip-stripping electrochemistry and suppressed vanadium dissolution, a robust adhesion ionic liquid ([BVIM]Br) modified PAM gel electrolyte (PAM-IL) was strategically designed. Leveraging steric hindrance of polymer segments and the directional coordination of anions and cations, the PAM-IL electrolyte delocalizes charge accumulation and suppresses overstabilization of tip-localized complexes, thereby reversing the adsorption asymmetry behavior (ΔGads-tip > ΔGads-root) to achieve tip-targeted zinc stripping. Concurrently, strong ion-dipole interactions within PAM-IL elevate the activation barrier for V dissolution and combine with its butyl-functionalized hydrophobic moieties to impede water molecule penetration and suppress vanadium dissolution. Therefore, the as-prepared Zn||PAM-IL||NH4V4O10 batteries deliver a reversible capacity of 266.4 mAh g-1 at 1 A g-1 after 2000 cycles and retained a higher capacity retention (82.3%) after 250 cycles than aqueous electrolyte (28.1%) with extreme-low current density of 0.2 A g-1. Furthermore, the PAM-IL exhibits exceptional cycling stability over a wide temperature range, from 0 °C to 60 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信