揭示形成电压对富锂层状氧化物阴极的影响。

IF 16.9
Kang Zhang, Yichun Zheng, Jianhua Yin, Yawen Yan, Yilong Chen, Yuan Tian, Yizhen Huang, Lianpeng Li, Jiyuan Xue, Wen Jiao, Na Liu, Lirong Zheng, Huan Huang, Jing Zhang, Deniz Wong, Bodry Tegomo Chiogo, Christian Schulz, Yang Sun, Chongheng Shen, Qingsong Wang, Yu Qiao, Shi-Gang Sun
{"title":"揭示形成电压对富锂层状氧化物阴极的影响。","authors":"Kang Zhang, Yichun Zheng, Jianhua Yin, Yawen Yan, Yilong Chen, Yuan Tian, Yizhen Huang, Lianpeng Li, Jiyuan Xue, Wen Jiao, Na Liu, Lirong Zheng, Huan Huang, Jing Zhang, Deniz Wong, Bodry Tegomo Chiogo, Christian Schulz, Yang Sun, Chongheng Shen, Qingsong Wang, Yu Qiao, Shi-Gang Sun","doi":"10.1002/anie.202515719","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-rich layered oxide (LRLO) cathodes are recognized for their high energy densities, primarily driven by oxygen-related anionic redox activities, yet substantial activation of this process simultaneously induces structural instability. The typical voltage range in academic studies spans 2.0-4.8 V. Although 2.5-4.5 V are generally considered in industrial applications for enhanced capacity retention and electrolyte compatibility, this moderate voltage window leads to reduced capacity. To address energy density limitations, several top battery suppliers propose to separately increase the formation voltage during the initial cycle to enhance capacity, while other companies (e.g., Contemporary Amperex Technology Co., Ltd., CATL) claim that this high-voltage formation protocol would exacerbate cycling capacity fading. Herein, we systemically demonstrate that high-voltage formation promotes substantial Li<sup>+</sup> extraction from the transition metal (TM) layers, creating vacancies (in TM layer) that drive in-plane TM migration. This migration triggers a transformation in the OM<sub>6</sub> (M, cation) configuration from O4 (OLi<sub>x</sub>TM<sub>2</sub>) to O5 (OLi<sub>y</sub>TM<sub>1</sub>). Such evolution simultaneously enhances both anionic and cationic redox activity, collectively boosting capacity. Nonetheless, the induced in-plane TM migration would further aggravate out-of-plane TM migration, leading to progressive structural degradation, which has been elucidated as the main reason for cycling capacity fading.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515719"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Influence of Formation Voltage on Li-Rich Layered Oxide Cathode.\",\"authors\":\"Kang Zhang, Yichun Zheng, Jianhua Yin, Yawen Yan, Yilong Chen, Yuan Tian, Yizhen Huang, Lianpeng Li, Jiyuan Xue, Wen Jiao, Na Liu, Lirong Zheng, Huan Huang, Jing Zhang, Deniz Wong, Bodry Tegomo Chiogo, Christian Schulz, Yang Sun, Chongheng Shen, Qingsong Wang, Yu Qiao, Shi-Gang Sun\",\"doi\":\"10.1002/anie.202515719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lithium-rich layered oxide (LRLO) cathodes are recognized for their high energy densities, primarily driven by oxygen-related anionic redox activities, yet substantial activation of this process simultaneously induces structural instability. The typical voltage range in academic studies spans 2.0-4.8 V. Although 2.5-4.5 V are generally considered in industrial applications for enhanced capacity retention and electrolyte compatibility, this moderate voltage window leads to reduced capacity. To address energy density limitations, several top battery suppliers propose to separately increase the formation voltage during the initial cycle to enhance capacity, while other companies (e.g., Contemporary Amperex Technology Co., Ltd., CATL) claim that this high-voltage formation protocol would exacerbate cycling capacity fading. Herein, we systemically demonstrate that high-voltage formation promotes substantial Li<sup>+</sup> extraction from the transition metal (TM) layers, creating vacancies (in TM layer) that drive in-plane TM migration. This migration triggers a transformation in the OM<sub>6</sub> (M, cation) configuration from O4 (OLi<sub>x</sub>TM<sub>2</sub>) to O5 (OLi<sub>y</sub>TM<sub>1</sub>). Such evolution simultaneously enhances both anionic and cationic redox activity, collectively boosting capacity. Nonetheless, the induced in-plane TM migration would further aggravate out-of-plane TM migration, leading to progressive structural degradation, which has been elucidated as the main reason for cycling capacity fading.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202515719\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

富锂层状氧化物(LRLO)阴极以其高能量密度而闻名,主要由氧相关的阴离子氧化还原活性驱动,但该过程的大量激活同时会导致结构不稳定。学术研究中典型的电压范围为2.0-4.8 V。虽然在工业应用中通常考虑2.5-4.5 V,以增强容量保持和电解质兼容性,但这种中等电压窗口导致容量降低。为了解决能量密度的限制,一些顶级电池供应商建议在初始循环期间分别提高形成电压以提高容量,而其他公司(例如Contemporary Amperex Technology Co., Ltd, CATL)则声称这种高压形成协议会加剧循环容量的衰减。在本文中,我们系统地证明了高压形成促进了大量Li+从过渡金属(TM)层中提取,在TM层中创造了空位,从而驱动了平面内的TM迁移。这种迁移触发了OM6 (M,阳离子)配置从O4 (OLixTM2)到O5 (OLiyTM1)的转换。这种进化同时增强了阴离子和阳离子的氧化还原活性,共同提高了容量。然而,诱导的面内TM迁移会进一步加剧面外TM迁移,导致结构渐进式退化,这是循环能力衰退的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Influence of Formation Voltage on Li-Rich Layered Oxide Cathode.

Lithium-rich layered oxide (LRLO) cathodes are recognized for their high energy densities, primarily driven by oxygen-related anionic redox activities, yet substantial activation of this process simultaneously induces structural instability. The typical voltage range in academic studies spans 2.0-4.8 V. Although 2.5-4.5 V are generally considered in industrial applications for enhanced capacity retention and electrolyte compatibility, this moderate voltage window leads to reduced capacity. To address energy density limitations, several top battery suppliers propose to separately increase the formation voltage during the initial cycle to enhance capacity, while other companies (e.g., Contemporary Amperex Technology Co., Ltd., CATL) claim that this high-voltage formation protocol would exacerbate cycling capacity fading. Herein, we systemically demonstrate that high-voltage formation promotes substantial Li+ extraction from the transition metal (TM) layers, creating vacancies (in TM layer) that drive in-plane TM migration. This migration triggers a transformation in the OM6 (M, cation) configuration from O4 (OLixTM2) to O5 (OLiyTM1). Such evolution simultaneously enhances both anionic and cationic redox activity, collectively boosting capacity. Nonetheless, the induced in-plane TM migration would further aggravate out-of-plane TM migration, leading to progressive structural degradation, which has been elucidated as the main reason for cycling capacity fading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信