溢出氢促进硝基芳烃加氢工业活动与ppm级铂单原子。

IF 16.9
Nai-Liang Wang, Tong-Hui Li, Xin Wang, Xiang-Lin Kong, Wen-Hao Xie, Lin Xu, Yu-Rong He, Peng-Fei Zhang, Zheng-Hong Luo
{"title":"溢出氢促进硝基芳烃加氢工业活动与ppm级铂单原子。","authors":"Nai-Liang Wang, Tong-Hui Li, Xin Wang, Xiang-Lin Kong, Wen-Hao Xie, Lin Xu, Yu-Rong He, Peng-Fei Zhang, Zheng-Hong Luo","doi":"10.1002/anie.202514332","DOIUrl":null,"url":null,"abstract":"<p><p>The application of noble single-atom catalysts (SACs) at trace loadings is constrained by a low space-time yield, presenting a formidable challenge in elevating the activity of SACs to be comparable to industrial catalysts in nitroarene hydrogenation. In this study, the spillover hydrogen from a carbon-coated nickel support (Ni@C) coupled with 300 ppm platinum results in a 25.7-fold enhancement in turnover frequency (TOF, 44.1 s<sup>-1</sup>), thereby achieving a space-time yield equivalent to 1 wt.% Pd/C industrial hydrogenation catalyst. Remarkably, the Pt<sub>1</sub>/Ni@C catalyst preserves excellent stability under rigorous conditions, including acidic, basic, and oxidative environments. Density functional theory (DFT) calculations reveal that spillover hydrogen effectively reduces the hydrogenation energy barrier, with the energy barrier height inversely correlated to the density of adsorbed spillover hydrogen on Pt single atom. Extrapolating the enhanced hydrogenation effect to other SACs and nitroarene substrates shows that spillover hydrogen can either promote or inhibit hydrogenation processes. The density of adsorbed spillover hydrogen serves as a predictive descriptor for discerning the direction of the synergistic effect in single-atom catalyzed hydrogenation. This study provides insightful guidance for the rational design of more efficient and industrially viable SACs exploiting hydrogen spillover.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202514332"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spillover Hydrogen Boosts Nitroarene Hydrogenation to Industrial Activity with Ppm-Level Platinum Single Atoms.\",\"authors\":\"Nai-Liang Wang, Tong-Hui Li, Xin Wang, Xiang-Lin Kong, Wen-Hao Xie, Lin Xu, Yu-Rong He, Peng-Fei Zhang, Zheng-Hong Luo\",\"doi\":\"10.1002/anie.202514332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of noble single-atom catalysts (SACs) at trace loadings is constrained by a low space-time yield, presenting a formidable challenge in elevating the activity of SACs to be comparable to industrial catalysts in nitroarene hydrogenation. In this study, the spillover hydrogen from a carbon-coated nickel support (Ni@C) coupled with 300 ppm platinum results in a 25.7-fold enhancement in turnover frequency (TOF, 44.1 s<sup>-1</sup>), thereby achieving a space-time yield equivalent to 1 wt.% Pd/C industrial hydrogenation catalyst. Remarkably, the Pt<sub>1</sub>/Ni@C catalyst preserves excellent stability under rigorous conditions, including acidic, basic, and oxidative environments. Density functional theory (DFT) calculations reveal that spillover hydrogen effectively reduces the hydrogenation energy barrier, with the energy barrier height inversely correlated to the density of adsorbed spillover hydrogen on Pt single atom. Extrapolating the enhanced hydrogenation effect to other SACs and nitroarene substrates shows that spillover hydrogen can either promote or inhibit hydrogenation processes. The density of adsorbed spillover hydrogen serves as a predictive descriptor for discerning the direction of the synergistic effect in single-atom catalyzed hydrogenation. This study provides insightful guidance for the rational design of more efficient and industrially viable SACs exploiting hydrogen spillover.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202514332\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202514332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202514332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀有单原子催化剂(SACs)在痕量负载下的应用受到低时空产率的限制,这给将SACs的活性提高到与硝基甲苯加氢工业催化剂相当的水平带来了巨大的挑战。在这项研究中,从碳包覆镍载体(Ni@C)中溢出的氢与300 ppm的铂相结合,导致转换频率提高25.7倍(TOF, 44.1 s-1),从而实现相当于1 wt.% Pd/C工业加氢催化剂的时空产率。值得注意的是,Pt1/Ni@C催化剂在严苛的条件下,包括酸性、碱性和氧化环境,都保持了优异的稳定性。密度泛函理论(DFT)计算表明,外溢氢有效地降低了Pt单原子上的氢化能垒,其能垒高度与外溢氢吸附在Pt单原子上的密度成反比。将这种增强的加氢效应外推到其他SACs和硝基芳烃底物上,表明溢出氢可以促进或抑制加氢过程。吸附溢出氢的密度可作为判别单原子催化加氢过程中协同效应方向的预测描述符。本研究为合理设计更高效、更具工业可行性的氢溢出sac提供了有意义的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spillover Hydrogen Boosts Nitroarene Hydrogenation to Industrial Activity with Ppm-Level Platinum Single Atoms.

The application of noble single-atom catalysts (SACs) at trace loadings is constrained by a low space-time yield, presenting a formidable challenge in elevating the activity of SACs to be comparable to industrial catalysts in nitroarene hydrogenation. In this study, the spillover hydrogen from a carbon-coated nickel support (Ni@C) coupled with 300 ppm platinum results in a 25.7-fold enhancement in turnover frequency (TOF, 44.1 s-1), thereby achieving a space-time yield equivalent to 1 wt.% Pd/C industrial hydrogenation catalyst. Remarkably, the Pt1/Ni@C catalyst preserves excellent stability under rigorous conditions, including acidic, basic, and oxidative environments. Density functional theory (DFT) calculations reveal that spillover hydrogen effectively reduces the hydrogenation energy barrier, with the energy barrier height inversely correlated to the density of adsorbed spillover hydrogen on Pt single atom. Extrapolating the enhanced hydrogenation effect to other SACs and nitroarene substrates shows that spillover hydrogen can either promote or inhibit hydrogenation processes. The density of adsorbed spillover hydrogen serves as a predictive descriptor for discerning the direction of the synergistic effect in single-atom catalyzed hydrogenation. This study provides insightful guidance for the rational design of more efficient and industrially viable SACs exploiting hydrogen spillover.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信