炎症中的线粒体RNA。

IF 10 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
International Journal of Biological Sciences Pub Date : 2025-08-22 eCollection Date: 2025-01-01 DOI:10.7150/ijbs.119841
Jian Chen, Chen You, Haibo Xie, Qixing Zhu
{"title":"炎症中的线粒体RNA。","authors":"Jian Chen, Chen You, Haibo Xie, Qixing Zhu","doi":"10.7150/ijbs.119841","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are dynamic organelles integral to cellular energy metabolism and homeostasis. Beyond their traditional roles, a growing body of evidence underscores the importance of mitochondria as pivotal regulators of innate immune signaling pathways. Recently, mitochondrial RNA (mtRNA) has been identified as a novel modulator of inflammatory responses. mtRNA is detected by intracellular pattern recognition receptors (PRRs), which subsequently activate the mitochondrial antiviral-signaling protein (MAVS) and the interferon regulatory factor 3 (IRF3)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling axis, as well as inflammasome pathways. This activation leads to the production of type I interferons and pro-inflammatory cytokines. Furthermore, mtRNA facilitates the propagation of inflammatory signals through exosome-mediated intercellular transfer. Among the various forms of mtRNA, mitochondrial double-stranded RNA (mt-dsRNA) is particularly prone to activating inflammatory responses due to its distinctive double-helical structure. The aberrant accumulation of mt-dsRNA is strongly linked autoimmune diseases, degenerative disease, Liver Disease, kidney disease, cancers, cardiovascular diseases, and respiratory ailments. This review proposes innovative therapeutic strategies aimed at degrading pathological mtRNA or interrupting inflammatory pathways by targeting critical regulatory nodes in mtRNA metabolism and its downstream inflammatory processes.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"21 12","pages":"5378-5392"},"PeriodicalIF":10.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial RNA in Inflammation.\",\"authors\":\"Jian Chen, Chen You, Haibo Xie, Qixing Zhu\",\"doi\":\"10.7150/ijbs.119841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are dynamic organelles integral to cellular energy metabolism and homeostasis. Beyond their traditional roles, a growing body of evidence underscores the importance of mitochondria as pivotal regulators of innate immune signaling pathways. Recently, mitochondrial RNA (mtRNA) has been identified as a novel modulator of inflammatory responses. mtRNA is detected by intracellular pattern recognition receptors (PRRs), which subsequently activate the mitochondrial antiviral-signaling protein (MAVS) and the interferon regulatory factor 3 (IRF3)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling axis, as well as inflammasome pathways. This activation leads to the production of type I interferons and pro-inflammatory cytokines. Furthermore, mtRNA facilitates the propagation of inflammatory signals through exosome-mediated intercellular transfer. Among the various forms of mtRNA, mitochondrial double-stranded RNA (mt-dsRNA) is particularly prone to activating inflammatory responses due to its distinctive double-helical structure. The aberrant accumulation of mt-dsRNA is strongly linked autoimmune diseases, degenerative disease, Liver Disease, kidney disease, cancers, cardiovascular diseases, and respiratory ailments. This review proposes innovative therapeutic strategies aimed at degrading pathological mtRNA or interrupting inflammatory pathways by targeting critical regulatory nodes in mtRNA metabolism and its downstream inflammatory processes.</p>\",\"PeriodicalId\":13762,\"journal\":{\"name\":\"International Journal of Biological Sciences\",\"volume\":\"21 12\",\"pages\":\"5378-5392\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7150/ijbs.119841\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.119841","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体是细胞能量代谢和体内平衡的动态细胞器。除了它们的传统作用,越来越多的证据强调了线粒体作为先天免疫信号通路的关键调节者的重要性。最近,线粒体RNA (mtRNA)被认为是一种新的炎症反应调节剂。mtRNA通过细胞内模式识别受体(PRRs)检测,随后激活线粒体抗病毒信号蛋白(MAVS)和活化B细胞的干扰素调节因子3 (IRF3)/核因子kappa-轻链增强子(NF-κB)信号轴,以及炎性小体途径。这种激活导致I型干扰素和促炎细胞因子的产生。此外,mtRNA通过外泌体介导的细胞间转移促进炎症信号的传播。在各种形式的mtRNA中,线粒体双链RNA (mt-dsRNA)由于其独特的双螺旋结构,特别容易激活炎症反应。mt-dsRNA的异常积累与自身免疫性疾病、退行性疾病、肝病、肾病、癌症、心血管疾病和呼吸系统疾病密切相关。这篇综述提出了创新的治疗策略,旨在通过靶向mtRNA代谢及其下游炎症过程中的关键调控节点来降解病理性mtRNA或中断炎症途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitochondrial RNA in Inflammation.

Mitochondrial RNA in Inflammation.

Mitochondrial RNA in Inflammation.

Mitochondrial RNA in Inflammation.

Mitochondria are dynamic organelles integral to cellular energy metabolism and homeostasis. Beyond their traditional roles, a growing body of evidence underscores the importance of mitochondria as pivotal regulators of innate immune signaling pathways. Recently, mitochondrial RNA (mtRNA) has been identified as a novel modulator of inflammatory responses. mtRNA is detected by intracellular pattern recognition receptors (PRRs), which subsequently activate the mitochondrial antiviral-signaling protein (MAVS) and the interferon regulatory factor 3 (IRF3)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling axis, as well as inflammasome pathways. This activation leads to the production of type I interferons and pro-inflammatory cytokines. Furthermore, mtRNA facilitates the propagation of inflammatory signals through exosome-mediated intercellular transfer. Among the various forms of mtRNA, mitochondrial double-stranded RNA (mt-dsRNA) is particularly prone to activating inflammatory responses due to its distinctive double-helical structure. The aberrant accumulation of mt-dsRNA is strongly linked autoimmune diseases, degenerative disease, Liver Disease, kidney disease, cancers, cardiovascular diseases, and respiratory ailments. This review proposes innovative therapeutic strategies aimed at degrading pathological mtRNA or interrupting inflammatory pathways by targeting critical regulatory nodes in mtRNA metabolism and its downstream inflammatory processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信