面板尺寸、荧光染料选择和解混算法对超高参数流式细胞术分析的影响。

IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Debajit Bhowmick, Timothy P Bushnell
{"title":"面板尺寸、荧光染料选择和解混算法对超高参数流式细胞术分析的影响。","authors":"Debajit Bhowmick, Timothy P Bushnell","doi":"10.1002/cyto.a.24960","DOIUrl":null,"url":null,"abstract":"<p><p>The expansion of full spectral flow cytometry enabled us to run ultra-high-dimensional panels of up to 50 fluorochromes, offering unprecedented in-depth immunophenotyping. However, this advancement introduces significant analytical challenges, particularly in unmixing accuracy, population spread, and panel design. This study evaluates the impact of various unmixing algorithms on biological interpretation using different OMIP datasets. We demonstrate that algorithmic discrepancies can lead to loss of resolution, population misidentification, and incorrect interpretation of the biological information. Through comparative analysis and the use of measures like the Median Mismatch Index (MMI), Spillover Spread Matrix (SSM) and robust Standard Deviation (rSD), we highlight the limitations of current tools and propose strategies for optimized use of single stain, predicting the unmixing accuracy for a set of fluorochromes, and cares that need to be taken for correct data interpretation in high-parameter cytometry. We also showed the present version of SSM may not be suitable to predict the spillover spread for ultra-large panels.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Panel Size, Fluorochrome Selection, and Unmixing Algorithms on Ultra-High Parameter Flow Cytometry Analysis.\",\"authors\":\"Debajit Bhowmick, Timothy P Bushnell\",\"doi\":\"10.1002/cyto.a.24960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The expansion of full spectral flow cytometry enabled us to run ultra-high-dimensional panels of up to 50 fluorochromes, offering unprecedented in-depth immunophenotyping. However, this advancement introduces significant analytical challenges, particularly in unmixing accuracy, population spread, and panel design. This study evaluates the impact of various unmixing algorithms on biological interpretation using different OMIP datasets. We demonstrate that algorithmic discrepancies can lead to loss of resolution, population misidentification, and incorrect interpretation of the biological information. Through comparative analysis and the use of measures like the Median Mismatch Index (MMI), Spillover Spread Matrix (SSM) and robust Standard Deviation (rSD), we highlight the limitations of current tools and propose strategies for optimized use of single stain, predicting the unmixing accuracy for a set of fluorochromes, and cares that need to be taken for correct data interpretation in high-parameter cytometry. We also showed the present version of SSM may not be suitable to predict the spillover spread for ultra-large panels.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cyto.a.24960\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24960","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

全光谱流式细胞术的扩展使我们能够运行高达50个荧光色的超高维面板,提供前所未有的深度免疫表型。然而,这一进步带来了重大的分析挑战,特别是在解混精度、人口分布和面板设计方面。本研究使用不同的OMIP数据集评估了各种解混算法对生物解释的影响。我们证明,算法的差异会导致分辨率的丧失,种群的错误识别,以及对生物信息的错误解释。通过比较分析和使用中位数错配指数(MMI)、溢出扩散矩阵(SSM)和稳健标准偏差(rSD)等措施,我们强调了当前工具的局限性,并提出了优化单一染色使用的策略,预测了一组荧光染料的解混精度,以及在高参数细胞术中正确解释数据需要注意的问题。我们还表明,目前版本的SSM可能不适合预测超大面板的溢出扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Panel Size, Fluorochrome Selection, and Unmixing Algorithms on Ultra-High Parameter Flow Cytometry Analysis.

The expansion of full spectral flow cytometry enabled us to run ultra-high-dimensional panels of up to 50 fluorochromes, offering unprecedented in-depth immunophenotyping. However, this advancement introduces significant analytical challenges, particularly in unmixing accuracy, population spread, and panel design. This study evaluates the impact of various unmixing algorithms on biological interpretation using different OMIP datasets. We demonstrate that algorithmic discrepancies can lead to loss of resolution, population misidentification, and incorrect interpretation of the biological information. Through comparative analysis and the use of measures like the Median Mismatch Index (MMI), Spillover Spread Matrix (SSM) and robust Standard Deviation (rSD), we highlight the limitations of current tools and propose strategies for optimized use of single stain, predicting the unmixing accuracy for a set of fluorochromes, and cares that need to be taken for correct data interpretation in high-parameter cytometry. We also showed the present version of SSM may not be suitable to predict the spillover spread for ultra-large panels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信