灵长类动物的抓握表现与首选的底物使用不一致。

IF 3 2区 生物学 Q2 BIOLOGY
Biology Letters Pub Date : 2025-09-01 Epub Date: 2025-09-17 DOI:10.1098/rsbl.2025.0366
Michael Constantine Granatosky, Melody Young, Gabrielle A Hirschkorn, Julie C McKinney, Kay Welser, Edwin Dickinson
{"title":"灵长类动物的抓握表现与首选的底物使用不一致。","authors":"Michael Constantine Granatosky, Melody Young, Gabrielle A Hirschkorn, Julie C McKinney, Kay Welser, Edwin Dickinson","doi":"10.1098/rsbl.2025.0366","DOIUrl":null,"url":null,"abstract":"<p><p>Arboreal locomotion presents considerable mechanical challenges, requiring animals to maintain stability on narrow supports. While some species rely on gait adjustments, others use grasping autopodia to counteract toppling torques. We investigated how substrate size affects grasping force in strepsirrhine primates-a lineage regarded as a model for early primates and known for fine-branch arboreal locomotion. Using a custom apparatus, we measured <i>in vivo</i> grip strength across three substrate diameters (small, medium and large) in 11 species. In both hands and feet, grip strength peaked on medium-sized substrates-those allowing optimal digital wrapping-and declined on small and large diameters. These patterns remained significant after controlling for phylogeny, body size, sex and age. Despite weaker performance on small substrates, strepsirrhines commonly navigate thin terminal branches in nature, suggesting an ecological mismatch between peak grasping performance and substrate use. This implies that powerful digital grasping may be less critical for arboreal stability than often assumed. Instead, whole-body mechanics and precise limb placement likely compensate when grip is reduced. Rather than maximizing force, the primate hand appears adapted for versatility-supporting the broader principle that evolutionary success often reflects functional adequacy and adaptability over specialization for force production.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":"21 9","pages":"20250366"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Grasping performance in primates does not align with preferred substrate use.\",\"authors\":\"Michael Constantine Granatosky, Melody Young, Gabrielle A Hirschkorn, Julie C McKinney, Kay Welser, Edwin Dickinson\",\"doi\":\"10.1098/rsbl.2025.0366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arboreal locomotion presents considerable mechanical challenges, requiring animals to maintain stability on narrow supports. While some species rely on gait adjustments, others use grasping autopodia to counteract toppling torques. We investigated how substrate size affects grasping force in strepsirrhine primates-a lineage regarded as a model for early primates and known for fine-branch arboreal locomotion. Using a custom apparatus, we measured <i>in vivo</i> grip strength across three substrate diameters (small, medium and large) in 11 species. In both hands and feet, grip strength peaked on medium-sized substrates-those allowing optimal digital wrapping-and declined on small and large diameters. These patterns remained significant after controlling for phylogeny, body size, sex and age. Despite weaker performance on small substrates, strepsirrhines commonly navigate thin terminal branches in nature, suggesting an ecological mismatch between peak grasping performance and substrate use. This implies that powerful digital grasping may be less critical for arboreal stability than often assumed. Instead, whole-body mechanics and precise limb placement likely compensate when grip is reduced. Rather than maximizing force, the primate hand appears adapted for versatility-supporting the broader principle that evolutionary success often reflects functional adequacy and adaptability over specialization for force production.</p>\",\"PeriodicalId\":9005,\"journal\":{\"name\":\"Biology Letters\",\"volume\":\"21 9\",\"pages\":\"20250366\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsbl.2025.0366\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2025.0366","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在树上运动提出了相当大的机械挑战,要求动物在狭窄的支撑物上保持稳定。虽然一些物种依靠步态调整,但其他物种利用抓取自足来抵消倾覆的扭矩。我们研究了底物大小如何影响链状灵长类动物的抓握力,链状灵长类动物被认为是早期灵长类动物的模型,以细枝树枝运动而闻名。使用定制的仪器,我们测量了11个物种的三种基质直径(小、中、大)的体内握力。在手和脚上,握力在中等大小的基材上达到峰值,而在小直径和大直径的基材上则下降。在控制系统发育、体型、性别和年龄后,这些模式仍然显著。尽管在小型基质上的表现较弱,但在自然界中,链霉菌通常会在薄的末端枝上导航,这表明在抓峰性能和基质使用之间存在生态不匹配。这意味着强大的数字抓取对于树的稳定性可能没有通常认为的那么重要。相反,当抓地力减少时,全身力学和精确的肢体位置可能会弥补。灵长类动物的手并没有将力量最大化,而是适应了多功能性——这支持了一个更广泛的原则,即进化的成功往往反映了功能的充分性和适应性,而不是力量生产的专业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grasping performance in primates does not align with preferred substrate use.

Arboreal locomotion presents considerable mechanical challenges, requiring animals to maintain stability on narrow supports. While some species rely on gait adjustments, others use grasping autopodia to counteract toppling torques. We investigated how substrate size affects grasping force in strepsirrhine primates-a lineage regarded as a model for early primates and known for fine-branch arboreal locomotion. Using a custom apparatus, we measured in vivo grip strength across three substrate diameters (small, medium and large) in 11 species. In both hands and feet, grip strength peaked on medium-sized substrates-those allowing optimal digital wrapping-and declined on small and large diameters. These patterns remained significant after controlling for phylogeny, body size, sex and age. Despite weaker performance on small substrates, strepsirrhines commonly navigate thin terminal branches in nature, suggesting an ecological mismatch between peak grasping performance and substrate use. This implies that powerful digital grasping may be less critical for arboreal stability than often assumed. Instead, whole-body mechanics and precise limb placement likely compensate when grip is reduced. Rather than maximizing force, the primate hand appears adapted for versatility-supporting the broader principle that evolutionary success often reflects functional adequacy and adaptability over specialization for force production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Letters
Biology Letters 生物-进化生物学
CiteScore
5.50
自引率
3.00%
发文量
164
审稿时长
1.0 months
期刊介绍: Previously a supplement to Proceedings B, and launched as an independent journal in 2005, Biology Letters is a primarily online, peer-reviewed journal that publishes short, high-quality articles, reviews and opinion pieces from across the biological sciences. The scope of Biology Letters is vast - publishing high-quality research in any area of the biological sciences. However, we have particular strengths in the biology, evolution and ecology of whole organisms. We also publish in other areas of biology, such as molecular ecology and evolution, environmental science, and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信