Fabrizio Micari, Simone Amantia, Riccardo Puleo, Giuseppe Ingarao
{"title":"创新理论在金属成形建模中的应用:FEM的黄昏与AI的黎明?","authors":"Fabrizio Micari, Simone Amantia, Riccardo Puleo, Giuseppe Ingarao","doi":"10.1007/s12289-025-01942-3","DOIUrl":null,"url":null,"abstract":"<div><p>The paper derives from a simple question that the authors have asked themselves when attending conferences and reading articles on modelling of metal forming processes: is numerical modelling based on FEA still innovative? Are the proposed results able to provide a further effective enhancement to scientific knowledge? And how huge was the effort to obtain such an eventual enhancement? Starting with these questions, the authors applied some basic concepts of Innovation Theory to the last forty years of numerical modelling of forming processes and understood that this technology has reached its natural limit: only small enhancements of modelling performances are obtained despite quite big efforts. Also, research topic trends analysis was performed within ESAFORM community through text mining approaches. Now, to answer the research questions still open, a disruptive discontinuity is necessary, aimed at assessing a new master modelling technology.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01942-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of innovation theory to metal forming modelling: FEM sunset and AI dawn??\",\"authors\":\"Fabrizio Micari, Simone Amantia, Riccardo Puleo, Giuseppe Ingarao\",\"doi\":\"10.1007/s12289-025-01942-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper derives from a simple question that the authors have asked themselves when attending conferences and reading articles on modelling of metal forming processes: is numerical modelling based on FEA still innovative? Are the proposed results able to provide a further effective enhancement to scientific knowledge? And how huge was the effort to obtain such an eventual enhancement? Starting with these questions, the authors applied some basic concepts of Innovation Theory to the last forty years of numerical modelling of forming processes and understood that this technology has reached its natural limit: only small enhancements of modelling performances are obtained despite quite big efforts. Also, research topic trends analysis was performed within ESAFORM community through text mining approaches. Now, to answer the research questions still open, a disruptive discontinuity is necessary, aimed at assessing a new master modelling technology.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-025-01942-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01942-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01942-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Application of innovation theory to metal forming modelling: FEM sunset and AI dawn??
The paper derives from a simple question that the authors have asked themselves when attending conferences and reading articles on modelling of metal forming processes: is numerical modelling based on FEA still innovative? Are the proposed results able to provide a further effective enhancement to scientific knowledge? And how huge was the effort to obtain such an eventual enhancement? Starting with these questions, the authors applied some basic concepts of Innovation Theory to the last forty years of numerical modelling of forming processes and understood that this technology has reached its natural limit: only small enhancements of modelling performances are obtained despite quite big efforts. Also, research topic trends analysis was performed within ESAFORM community through text mining approaches. Now, to answer the research questions still open, a disruptive discontinuity is necessary, aimed at assessing a new master modelling technology.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.