lambda的q函数

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Davide Masoero, Evgeny Mukhin, Andrea Raimondo
{"title":"lambda的q函数","authors":"Davide Masoero,&nbsp;Evgeny Mukhin,&nbsp;Andrea Raimondo","doi":"10.1007/s11005-025-01988-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Schrödinger operators which are constructed from the <span>\\(\\lambda \\)</span>-opers corresponding to solutions of the <span>\\(\\widehat{\\mathfrak {sl}}_2\\)</span> Gaudin Bethe Ansatz equations. We define and study the connection coefficients called the <i>Q</i>-functions. We conjecture that the <i>Q</i>-functions obtained from the <span>\\(\\lambda \\)</span>-opers coincide with the <i>Q</i>-functions of the Bazhanov–Lukyanov–Zamolodchikov opers with the monster potential related to the quantum KdV flows. We give supporting evidence for this conjecture. In particular, we give a rigorous proof that the <i>Q</i>-functions of <span>\\(\\lambda \\)</span>-opers satisfy the <i>QQ</i> and <i>TQ</i> relations.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Q-functions for lambda opers\",\"authors\":\"Davide Masoero,&nbsp;Evgeny Mukhin,&nbsp;Andrea Raimondo\",\"doi\":\"10.1007/s11005-025-01988-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Schrödinger operators which are constructed from the <span>\\\\(\\\\lambda \\\\)</span>-opers corresponding to solutions of the <span>\\\\(\\\\widehat{\\\\mathfrak {sl}}_2\\\\)</span> Gaudin Bethe Ansatz equations. We define and study the connection coefficients called the <i>Q</i>-functions. We conjecture that the <i>Q</i>-functions obtained from the <span>\\\\(\\\\lambda \\\\)</span>-opers coincide with the <i>Q</i>-functions of the Bazhanov–Lukyanov–Zamolodchikov opers with the monster potential related to the quantum KdV flows. We give supporting evidence for this conjecture. In particular, we give a rigorous proof that the <i>Q</i>-functions of <span>\\\\(\\\\lambda \\\\)</span>-opers satisfy the <i>QQ</i> and <i>TQ</i> relations.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01988-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01988-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑由\(\widehat{\mathfrak {sl}}_2\) Gaudin Bethe Ansatz方程解对应的\(\lambda \) -算子构造的Schrödinger算子。我们定义并研究了称为q函数的连接系数。我们推测\(\lambda \) -开子的q -函数与具有与量子KdV流相关的巨势的Bazhanov-Lukyanov-Zamolodchikov开子的q -函数一致。我们为这个猜想提供了支持性的证据。特别地,我们给出了\(\lambda \) -op的q函数满足QQ和TQ关系的严格证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Q-functions for lambda opers

Q-functions for lambda opers

Q-functions for lambda opers

We consider the Schrödinger operators which are constructed from the \(\lambda \)-opers corresponding to solutions of the \(\widehat{\mathfrak {sl}}_2\) Gaudin Bethe Ansatz equations. We define and study the connection coefficients called the Q-functions. We conjecture that the Q-functions obtained from the \(\lambda \)-opers coincide with the Q-functions of the Bazhanov–Lukyanov–Zamolodchikov opers with the monster potential related to the quantum KdV flows. We give supporting evidence for this conjecture. In particular, we give a rigorous proof that the Q-functions of \(\lambda \)-opers satisfy the QQ and TQ relations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信