Сonfluent多光谱图像迭代逼近中粗化误差的区域填充

IF 0.8 Q4 OPTICS
M. V. Gashnikov
{"title":"Сonfluent多光谱图像迭代逼近中粗化误差的区域填充","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X25700171","DOIUrl":null,"url":null,"abstract":"<p>The paper investigates an iterative approximation-based method of compressing discrete multispectral images. Less thinned multispectral images are used to approximate more thinned ones, the degree of thinning decreasing in an iterrative fashion. When a set of thinned multispectral images is used, the data redundency is eliminated by using nonredundant nested covers consisted of specially reduced thinned images. Approximation errors are rounded and stored. The paper considers an algorithm of detection and effective representation of degenerate subsets of rounded iterative approximation errors. The algotithm allows more efficient representation of rounded error subsets and higher data compression ratios. The computational experiment confirms a considerable increase in efficiency of the iterative approximation-based method of discrete multispectral data compression.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"34 3","pages":"358 - 363"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Сonfluent Regions Packing of Coarsened Errors for Iterative Approximation of Multispectral Images\",\"authors\":\"M. V. Gashnikov\",\"doi\":\"10.3103/S1060992X25700171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper investigates an iterative approximation-based method of compressing discrete multispectral images. Less thinned multispectral images are used to approximate more thinned ones, the degree of thinning decreasing in an iterrative fashion. When a set of thinned multispectral images is used, the data redundency is eliminated by using nonredundant nested covers consisted of specially reduced thinned images. Approximation errors are rounded and stored. The paper considers an algorithm of detection and effective representation of degenerate subsets of rounded iterative approximation errors. The algotithm allows more efficient representation of rounded error subsets and higher data compression ratios. The computational experiment confirms a considerable increase in efficiency of the iterative approximation-based method of discrete multispectral data compression.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"34 3\",\"pages\":\"358 - 363\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X25700171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X25700171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种基于迭代逼近的离散多光谱图像压缩方法。稀化程度较低的多光谱图像被用来近似稀化程度较高的多光谱图像,稀化程度以迭代的方式递减。当使用一组稀疏的多光谱图像时,通过使用由特别减少的稀疏图像组成的非冗余嵌套覆盖来消除数据冗余。近似误差被四舍五入并存储。本文研究了一种舍入迭代逼近误差退化子集的检测和有效表示算法。该算法允许更有效地表示舍入误差子集和更高的数据压缩比。计算实验证实了基于迭代逼近的离散多光谱数据压缩方法的效率有较大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Сonfluent Regions Packing of Coarsened Errors for Iterative Approximation of Multispectral Images

Сonfluent Regions Packing of Coarsened Errors for Iterative Approximation of Multispectral Images

Сonfluent Regions Packing of Coarsened Errors for Iterative Approximation of Multispectral Images

The paper investigates an iterative approximation-based method of compressing discrete multispectral images. Less thinned multispectral images are used to approximate more thinned ones, the degree of thinning decreasing in an iterrative fashion. When a set of thinned multispectral images is used, the data redundency is eliminated by using nonredundant nested covers consisted of specially reduced thinned images. Approximation errors are rounded and stored. The paper considers an algorithm of detection and effective representation of degenerate subsets of rounded iterative approximation errors. The algotithm allows more efficient representation of rounded error subsets and higher data compression ratios. The computational experiment confirms a considerable increase in efficiency of the iterative approximation-based method of discrete multispectral data compression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信