社交媒体谣言检测的高效神经网络方法

IF 0.8 Q4 OPTICS
Manya Gidwani,  Ashwini Rao
{"title":"社交媒体谣言检测的高效神经网络方法","authors":"Manya Gidwani,&nbsp; Ashwini Rao","doi":"10.3103/S1060992X24601775","DOIUrl":null,"url":null,"abstract":"<p>Social media rumours significantly challenge societal discourse, demanding effective detection mechanisms. Existing automated rumour detection methods primarily rely on topological data, yet computational complexity and managing large datasets remain formidable obstacles. This study proposes a novel neural network approach utilising graphical structures to address these challenges and enhance rumour detection efficiency. This study suggests a novel neural network approach to improve rumour detection efficiency using graphical structures from the PHEME dataset. The strategy aims to improve classifier performance by transforming tweeting graphs into distinct binary trees, enabling the learning of structural information’s propagation and dispersion. This makes it possible to build meta-tree paths that record and capture local structural information. The model learns global structural representations using BERT on these pathways. The approach also incorporates user relationships and content associations utilizing a bidirectional graph convolutional network encoder to learn node-level representations. The final node-level representation is synthesised by combining user and content embeddings. A fusion approach combines the structural and node-level representations, passing through a fully connected layer and a Softmax layer for rumour detection. This proposed model outperforms the existing models, with an accuracy of over 93% without cross-validation and more than 95% with cross-validation. Experimental validation demonstrates the effectiveness of the suggested approach in rumour detection over social media, offering a promising solution to mitigate the impact of misinformation and rumours in online discourse.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"34 3","pages":"428 - 440"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Neural Network Method for Rumour Detection over Social Media\",\"authors\":\"Manya Gidwani,&nbsp; Ashwini Rao\",\"doi\":\"10.3103/S1060992X24601775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Social media rumours significantly challenge societal discourse, demanding effective detection mechanisms. Existing automated rumour detection methods primarily rely on topological data, yet computational complexity and managing large datasets remain formidable obstacles. This study proposes a novel neural network approach utilising graphical structures to address these challenges and enhance rumour detection efficiency. This study suggests a novel neural network approach to improve rumour detection efficiency using graphical structures from the PHEME dataset. The strategy aims to improve classifier performance by transforming tweeting graphs into distinct binary trees, enabling the learning of structural information’s propagation and dispersion. This makes it possible to build meta-tree paths that record and capture local structural information. The model learns global structural representations using BERT on these pathways. The approach also incorporates user relationships and content associations utilizing a bidirectional graph convolutional network encoder to learn node-level representations. The final node-level representation is synthesised by combining user and content embeddings. A fusion approach combines the structural and node-level representations, passing through a fully connected layer and a Softmax layer for rumour detection. This proposed model outperforms the existing models, with an accuracy of over 93% without cross-validation and more than 95% with cross-validation. Experimental validation demonstrates the effectiveness of the suggested approach in rumour detection over social media, offering a promising solution to mitigate the impact of misinformation and rumours in online discourse.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"34 3\",\"pages\":\"428 - 440\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X24601775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24601775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体谣言极大地挑战了社会话语,需要有效的检测机制。现有的自动化谣言检测方法主要依赖于拓扑数据,但计算复杂性和管理大型数据集仍然是巨大的障碍。本研究提出了一种新的神经网络方法,利用图形结构来解决这些挑战并提高谣言检测效率。本研究提出了一种新的神经网络方法,利用来自PHEME数据集的图形结构来提高谣言检测效率。该策略旨在通过将tweet图转换为不同的二叉树,从而学习结构信息的传播和分散,从而提高分类器的性能。这使得构建记录和捕获局部结构信息的元树路径成为可能。该模型在这些路径上使用BERT学习全局结构表示。该方法还结合了用户关系和内容关联,利用双向图卷积网络编码器来学习节点级表示。最后的节点级表示通过结合用户嵌入和内容嵌入来合成。融合方法结合了结构和节点级表示,通过完全连接层和Softmax层进行谣言检测。该模型优于现有模型,未经交叉验证的准确率超过93%,交叉验证的准确率超过95%。实验验证证明了所建议的方法在社交媒体谣言检测中的有效性,为减轻在线话语中的错误信息和谣言的影响提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Neural Network Method for Rumour Detection over Social Media

Efficient Neural Network Method for Rumour Detection over Social Media

Efficient Neural Network Method for Rumour Detection over Social Media

Social media rumours significantly challenge societal discourse, demanding effective detection mechanisms. Existing automated rumour detection methods primarily rely on topological data, yet computational complexity and managing large datasets remain formidable obstacles. This study proposes a novel neural network approach utilising graphical structures to address these challenges and enhance rumour detection efficiency. This study suggests a novel neural network approach to improve rumour detection efficiency using graphical structures from the PHEME dataset. The strategy aims to improve classifier performance by transforming tweeting graphs into distinct binary trees, enabling the learning of structural information’s propagation and dispersion. This makes it possible to build meta-tree paths that record and capture local structural information. The model learns global structural representations using BERT on these pathways. The approach also incorporates user relationships and content associations utilizing a bidirectional graph convolutional network encoder to learn node-level representations. The final node-level representation is synthesised by combining user and content embeddings. A fusion approach combines the structural and node-level representations, passing through a fully connected layer and a Softmax layer for rumour detection. This proposed model outperforms the existing models, with an accuracy of over 93% without cross-validation and more than 95% with cross-validation. Experimental validation demonstrates the effectiveness of the suggested approach in rumour detection over social media, offering a promising solution to mitigate the impact of misinformation and rumours in online discourse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信