M3DMap:动态环境的对象感知多模态3D映射

IF 0.8 Q4 OPTICS
D. A. Yudin
{"title":"M3DMap:动态环境的对象感知多模态3D映射","authors":"D. A. Yudin","doi":"10.3103/S1060992X25700092","DOIUrl":null,"url":null,"abstract":"<p>3D mapping in dynamic environments poses a challenge for modern researchers in robotics and autonomous transportation. There are no universal representations for dynamic 3D scenes that incorporate multimodal data such as images, point clouds, and text. This article takes a step toward solving this problem. It proposes a taxonomy of methods for constructing multimodal 3D maps, classifying contemporary approaches based on scene types and representations, learning methods, and practical applications. Using this taxonomy, a brief structured analysis of recent methods is provided. The article also describes an original modular method called M3DMap, designed for object-aware construction of multimodal 3D maps for both static and dynamic scenes. It consists of several interconnected components: a neural multimodal object segmentation and tracking module; an odometry estimation module, including trainable algorithms; a module for 3D map construction and updating with various implementations depending on the desired scene representation; and a multimodal data retrieval module. The article highlights original implementations of these modules and their advantages in solving various practical tasks, from 3D object grounding to mobile manipulation. Additionally, it presents theoretical propositions demonstrating the positive effect of using multimodal data and modern foundational models in 3D mapping methods. Details of the taxonomy and method implementation are available at https://yuddim.github.io/M3DMap.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"34 3","pages":"285 - 312"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M3DMap: Object-Aware Multimodal 3D Mapping for Dynamic Environments\",\"authors\":\"D. A. Yudin\",\"doi\":\"10.3103/S1060992X25700092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>3D mapping in dynamic environments poses a challenge for modern researchers in robotics and autonomous transportation. There are no universal representations for dynamic 3D scenes that incorporate multimodal data such as images, point clouds, and text. This article takes a step toward solving this problem. It proposes a taxonomy of methods for constructing multimodal 3D maps, classifying contemporary approaches based on scene types and representations, learning methods, and practical applications. Using this taxonomy, a brief structured analysis of recent methods is provided. The article also describes an original modular method called M3DMap, designed for object-aware construction of multimodal 3D maps for both static and dynamic scenes. It consists of several interconnected components: a neural multimodal object segmentation and tracking module; an odometry estimation module, including trainable algorithms; a module for 3D map construction and updating with various implementations depending on the desired scene representation; and a multimodal data retrieval module. The article highlights original implementations of these modules and their advantages in solving various practical tasks, from 3D object grounding to mobile manipulation. Additionally, it presents theoretical propositions demonstrating the positive effect of using multimodal data and modern foundational models in 3D mapping methods. Details of the taxonomy and method implementation are available at https://yuddim.github.io/M3DMap.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"34 3\",\"pages\":\"285 - 312\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X25700092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X25700092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

动态环境下的三维映射对现代机器人和自动运输研究人员提出了挑战。对于包含多模态数据(如图像、点云和文本)的动态3D场景,没有通用的表示。本文为解决这个问题迈出了一步。它提出了构建多模态3D地图的方法分类,根据场景类型和表示、学习方法和实际应用对当代方法进行分类。使用这种分类法,对最近的方法进行了简要的结构化分析。本文还介绍了一种名为M3DMap的原始模块化方法,用于静态和动态场景的多模态3D地图的对象感知构建。它由几个相互关联的组件组成:一个神经多模态目标分割和跟踪模块;里程计估计模块,包括可训练算法;一个用于3D地图构建和更新的模块,根据所需的场景表示使用各种实现;以及一个多模态数据检索模块。本文重点介绍了这些模块的原始实现及其在解决各种实际任务中的优势,从3D对象接地到移动操作。此外,本文还提出了一些理论命题,证明了在三维制图方法中使用多模态数据和现代基础模型的积极作用。分类法和方法实现的详细信息可在https://yuddim.github.io/M3DMap上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

M3DMap: Object-Aware Multimodal 3D Mapping for Dynamic Environments

M3DMap: Object-Aware Multimodal 3D Mapping for Dynamic Environments

M3DMap: Object-Aware Multimodal 3D Mapping for Dynamic Environments

3D mapping in dynamic environments poses a challenge for modern researchers in robotics and autonomous transportation. There are no universal representations for dynamic 3D scenes that incorporate multimodal data such as images, point clouds, and text. This article takes a step toward solving this problem. It proposes a taxonomy of methods for constructing multimodal 3D maps, classifying contemporary approaches based on scene types and representations, learning methods, and practical applications. Using this taxonomy, a brief structured analysis of recent methods is provided. The article also describes an original modular method called M3DMap, designed for object-aware construction of multimodal 3D maps for both static and dynamic scenes. It consists of several interconnected components: a neural multimodal object segmentation and tracking module; an odometry estimation module, including trainable algorithms; a module for 3D map construction and updating with various implementations depending on the desired scene representation; and a multimodal data retrieval module. The article highlights original implementations of these modules and their advantages in solving various practical tasks, from 3D object grounding to mobile manipulation. Additionally, it presents theoretical propositions demonstrating the positive effect of using multimodal data and modern foundational models in 3D mapping methods. Details of the taxonomy and method implementation are available at https://yuddim.github.io/M3DMap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信