庞加莱斯基米恩数

IF 0.8 Q4 OPTICS
V. V. Kotlyar, A. A. Kovalev, A. M. Telegin, S. S. Stafeev
{"title":"庞加莱斯基米恩数","authors":"V. V. Kotlyar,&nbsp;A. A. Kovalev,&nbsp;A. M. Telegin,&nbsp;S. S. Stafeev","doi":"10.3103/S1060992X24602227","DOIUrl":null,"url":null,"abstract":"<p>We discuss two source vector fields of Poincare-beam type that can be looked upon as optical skyrmions, i.e. topological quasiparticles. We derive explicit analytical relationships that describe projections of a three-dimensional (3D) skyrmion vector field in the source plane and skyrmion numbers, which are shown to be pro-portional to the topological charges of constituent optical vortices of the Poincare beams. We also propose a new constructive formula as an effective tool for calculating the skyrmion number via normalized Stokes vector projections rather than skyrmion vector field projections. The skyrmion numbers calculated using the familiar and newly proposed formulae coincide. Numbers of each projection of a 3D skyrmion vector field are shown to comprise a third of the full skyrmion number. The theoretical conclusions are validated by a numerical simulation. The non-uniform linear polarization in the skyrmion cross-section depends on the azimuthal angle and can be used to form a spiral microrelief due to the mass transfer of molecules on the surface of the material.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"34 3","pages":"347 - 357"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poincare Skyrmion Number\",\"authors\":\"V. V. Kotlyar,&nbsp;A. A. Kovalev,&nbsp;A. M. Telegin,&nbsp;S. S. Stafeev\",\"doi\":\"10.3103/S1060992X24602227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss two source vector fields of Poincare-beam type that can be looked upon as optical skyrmions, i.e. topological quasiparticles. We derive explicit analytical relationships that describe projections of a three-dimensional (3D) skyrmion vector field in the source plane and skyrmion numbers, which are shown to be pro-portional to the topological charges of constituent optical vortices of the Poincare beams. We also propose a new constructive formula as an effective tool for calculating the skyrmion number via normalized Stokes vector projections rather than skyrmion vector field projections. The skyrmion numbers calculated using the familiar and newly proposed formulae coincide. Numbers of each projection of a 3D skyrmion vector field are shown to comprise a third of the full skyrmion number. The theoretical conclusions are validated by a numerical simulation. The non-uniform linear polarization in the skyrmion cross-section depends on the azimuthal angle and can be used to form a spiral microrelief due to the mass transfer of molecules on the surface of the material.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"34 3\",\"pages\":\"347 - 357\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X24602227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24602227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了两个庞加莱光束型的源矢量场,它们可以被看作光学粒子,即拓扑准粒子。我们导出了描述三维(3D)斯基米子矢量场在源平面上的投影和斯基米子数的显式解析关系,这些关系被证明与庞加莱光束组成光学旋涡的拓扑电荷成正比。我们还提出了一个新的构造公式,作为通过规范化Stokes向量投影而不是skyrmion向量场投影来计算skyrmion数的有效工具。用熟悉的公式和新提出的公式计算出的skyrmion数是一致的。三维天空矢量场的每个投影的数量显示为包含完整天空数量的三分之一。通过数值模拟验证了理论结论。粒子截面上的非均匀线极化取决于方位角,由于分子在材料表面的传质作用,可以用来形成螺旋微凸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Poincare Skyrmion Number

Poincare Skyrmion Number

Poincare Skyrmion Number

We discuss two source vector fields of Poincare-beam type that can be looked upon as optical skyrmions, i.e. topological quasiparticles. We derive explicit analytical relationships that describe projections of a three-dimensional (3D) skyrmion vector field in the source plane and skyrmion numbers, which are shown to be pro-portional to the topological charges of constituent optical vortices of the Poincare beams. We also propose a new constructive formula as an effective tool for calculating the skyrmion number via normalized Stokes vector projections rather than skyrmion vector field projections. The skyrmion numbers calculated using the familiar and newly proposed formulae coincide. Numbers of each projection of a 3D skyrmion vector field are shown to comprise a third of the full skyrmion number. The theoretical conclusions are validated by a numerical simulation. The non-uniform linear polarization in the skyrmion cross-section depends on the azimuthal angle and can be used to form a spiral microrelief due to the mass transfer of molecules on the surface of the material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信