拟对角连接矩阵Hopfield模型

IF 0.8 Q4 OPTICS
Leonid Litinskii
{"title":"拟对角连接矩阵Hopfield模型","authors":"Leonid Litinskii","doi":"10.3103/S1060992X25700146","DOIUrl":null,"url":null,"abstract":"<p>We analyze a Hopfield neural network with a quasi-diagonal connection matrix. We use the term “quasi-diagonal matrix” to denote a matrix with all elements equal zero except the elements on the first super- and sub-diagonals of the principle diagonal. The nonzero elements are arbitrary real numbers. Such matrix generalizes the well-known connection matrix of the one dimensional Ising model with open boundary conditions where all nonzero elements equal <span>\\( + 1\\)</span>. We present a simple description of the fixed points of the Hopfield neural network and their dependence on the matrix elements. The obtained results also allow us to analyze the cases of a) the nonzero elements constitute arbitrary super- and sub-diagonals and b) periodic boundary conditions.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"34 3","pages":"334 - 346"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopfield Model with Quasi-Diagonal Connection Matrix\",\"authors\":\"Leonid Litinskii\",\"doi\":\"10.3103/S1060992X25700146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze a Hopfield neural network with a quasi-diagonal connection matrix. We use the term “quasi-diagonal matrix” to denote a matrix with all elements equal zero except the elements on the first super- and sub-diagonals of the principle diagonal. The nonzero elements are arbitrary real numbers. Such matrix generalizes the well-known connection matrix of the one dimensional Ising model with open boundary conditions where all nonzero elements equal <span>\\\\( + 1\\\\)</span>. We present a simple description of the fixed points of the Hopfield neural network and their dependence on the matrix elements. The obtained results also allow us to analyze the cases of a) the nonzero elements constitute arbitrary super- and sub-diagonals and b) periodic boundary conditions.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"34 3\",\"pages\":\"334 - 346\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X25700146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X25700146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

分析了一类具有拟对角连接矩阵的Hopfield神经网络。我们用“拟对角矩阵”来表示除了主对角线的第一个上对角线和次对角线上的元素外所有元素都等于零的矩阵。非零元素是任意实数。这种矩阵推广了众所周知的一维伊辛模型的连接矩阵,在开放边界条件下,所有的非零元素都等于\( + 1\)。给出了Hopfield神经网络的不动点及其与矩阵元素的依赖关系的简单描述。所得结果还允许我们分析a)非零元素构成任意超对角线和b)周期边界条件的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hopfield Model with Quasi-Diagonal Connection Matrix

Hopfield Model with Quasi-Diagonal Connection Matrix

Hopfield Model with Quasi-Diagonal Connection Matrix

We analyze a Hopfield neural network with a quasi-diagonal connection matrix. We use the term “quasi-diagonal matrix” to denote a matrix with all elements equal zero except the elements on the first super- and sub-diagonals of the principle diagonal. The nonzero elements are arbitrary real numbers. Such matrix generalizes the well-known connection matrix of the one dimensional Ising model with open boundary conditions where all nonzero elements equal \( + 1\). We present a simple description of the fixed points of the Hopfield neural network and their dependence on the matrix elements. The obtained results also allow us to analyze the cases of a) the nonzero elements constitute arbitrary super- and sub-diagonals and b) periodic boundary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信