改进随机轨道采样分子模拟的量子比特缩减

IF 5.9
Yoga A. Darmawan, Angga D. Fauzi, Yanoar P. Sarwono, Rui-Qin Zhang
{"title":"改进随机轨道采样分子模拟的量子比特缩减","authors":"Yoga A. Darmawan,&nbsp;Angga D. Fauzi,&nbsp;Yanoar P. Sarwono,&nbsp;Rui-Qin Zhang","doi":"10.1007/s43673-025-00167-5","DOIUrl":null,"url":null,"abstract":"<div><p>Near-term quantum devices offer promising avenues for addressing the electronic structure problem in quantum chemistry, yet their limited qubits and susceptibility to noise constrain algorithmic scalability. Although the variational quantum eigensolver (VQE) has shown potential for small-scale systems, further improvements are necessary to handle large basis sets and large many-electron molecules efficiently. In this work, we introduce RO-VQE, an improved approach derived from the earlier optimized orbital algorithm that employs a randomized procedure for selecting and optimizing orbitals. We evaluate RO-VQE on hydrogen chains systems (H<sub>2</sub> and H<sub>4</sub>)—a well-established benchmark for quantum chemistry methods—using minimal, split-valence, and correlation-consistent basis sets. For these systems, RO-VQE improves ground-state energy estimations compared to conventional VQE methods, matching the accuracy of systematic strategies in these test cases. These proof-of-concept results suggest that randomized active-space selection may offer a practical compromise in NISQ-era quantum computations, offering a flexible alternative to more deterministic methods, particularly for systems constrained by limited quantum resources.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00167-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving qubit reduction for molecular simulations with randomized orbital sampling\",\"authors\":\"Yoga A. Darmawan,&nbsp;Angga D. Fauzi,&nbsp;Yanoar P. Sarwono,&nbsp;Rui-Qin Zhang\",\"doi\":\"10.1007/s43673-025-00167-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Near-term quantum devices offer promising avenues for addressing the electronic structure problem in quantum chemistry, yet their limited qubits and susceptibility to noise constrain algorithmic scalability. Although the variational quantum eigensolver (VQE) has shown potential for small-scale systems, further improvements are necessary to handle large basis sets and large many-electron molecules efficiently. In this work, we introduce RO-VQE, an improved approach derived from the earlier optimized orbital algorithm that employs a randomized procedure for selecting and optimizing orbitals. We evaluate RO-VQE on hydrogen chains systems (H<sub>2</sub> and H<sub>4</sub>)—a well-established benchmark for quantum chemistry methods—using minimal, split-valence, and correlation-consistent basis sets. For these systems, RO-VQE improves ground-state energy estimations compared to conventional VQE methods, matching the accuracy of systematic strategies in these test cases. These proof-of-concept results suggest that randomized active-space selection may offer a practical compromise in NISQ-era quantum computations, offering a flexible alternative to more deterministic methods, particularly for systems constrained by limited quantum resources.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-025-00167-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-025-00167-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00167-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近期量子器件为解决量子化学中的电子结构问题提供了有希望的途径,但它们有限的量子位和对噪声的敏感性限制了算法的可扩展性。虽然变分量子特征解算器(VQE)在小规模系统中已经显示出潜力,但要有效地处理大型基集和大型多电子分子,还需要进一步的改进。在这项工作中,我们引入了RO-VQE,这是一种改进的方法,源自于早期的优化轨道算法,该算法采用随机过程来选择和优化轨道。我们在氢链系统(H2和H4)上评估RO-VQE -量子化学方法的成熟基准-使用最小,分裂价和相关一致的基集。对于这些系统,与传统的VQE方法相比,RO-VQE改进了基态能量估计,与这些测试用例中系统策略的准确性相匹配。这些概念验证结果表明,随机活动空间选择可能为nisq时代的量子计算提供了一种实用的折衷方案,为更确定性的方法提供了一种灵活的替代方案,特别是对于受有限量子资源约束的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving qubit reduction for molecular simulations with randomized orbital sampling

Near-term quantum devices offer promising avenues for addressing the electronic structure problem in quantum chemistry, yet their limited qubits and susceptibility to noise constrain algorithmic scalability. Although the variational quantum eigensolver (VQE) has shown potential for small-scale systems, further improvements are necessary to handle large basis sets and large many-electron molecules efficiently. In this work, we introduce RO-VQE, an improved approach derived from the earlier optimized orbital algorithm that employs a randomized procedure for selecting and optimizing orbitals. We evaluate RO-VQE on hydrogen chains systems (H2 and H4)—a well-established benchmark for quantum chemistry methods—using minimal, split-valence, and correlation-consistent basis sets. For these systems, RO-VQE improves ground-state energy estimations compared to conventional VQE methods, matching the accuracy of systematic strategies in these test cases. These proof-of-concept results suggest that randomized active-space selection may offer a practical compromise in NISQ-era quantum computations, offering a flexible alternative to more deterministic methods, particularly for systems constrained by limited quantum resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信