Xiaosheng Yu;Weiqi Bai;Jubo Chen;Jiawei Huang;Zhuoqun Fang;Zhaokui Li
{"title":"RoGLSNet:基于旋转位置嵌入的高效全局-局部场景感知网络","authors":"Xiaosheng Yu;Weiqi Bai;Jubo Chen;Jiawei Huang;Zhuoqun Fang;Zhaokui Li","doi":"10.1109/LGRS.2025.3607840","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of very high-resolution remote sensing images is vital for downstream tasks. Most semantic segmentation methods fail to fully consider the inherent characteristics of the images, such as intricate backgrounds, significant intraclass variance, and spatial interdependence of geographic object distribution. To address these challenges, we propose an efficient global–local scene awareness network with rotary position embedding (RoGLSNet). Specifically, we introduce the dynamic global filter (DGF) module to adaptively select frequency components, thereby mitigating interference from background noise. For high intraclass variance, the class center aware block (CCAB) performs class-level contextual modeling with spatial information integration. Additionally, the rotary position embedding (RoPE) is incorporated into vanilla attention to indirectly model the positional and distance relationships of geographic target objects. Extensive experimental results on two widely used datasets demonstrate that RoGLSNet outperforms the state-of-the-art (SOTA) segmentation methods. The code is available at <uri>https://github.com/bai101315/RoGLSNet</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoGLSNet: An Efficient Global–Local Scene Awareness Network With Rotary Position Embedding for Remote Image Segmentation\",\"authors\":\"Xiaosheng Yu;Weiqi Bai;Jubo Chen;Jiawei Huang;Zhuoqun Fang;Zhaokui Li\",\"doi\":\"10.1109/LGRS.2025.3607840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of very high-resolution remote sensing images is vital for downstream tasks. Most semantic segmentation methods fail to fully consider the inherent characteristics of the images, such as intricate backgrounds, significant intraclass variance, and spatial interdependence of geographic object distribution. To address these challenges, we propose an efficient global–local scene awareness network with rotary position embedding (RoGLSNet). Specifically, we introduce the dynamic global filter (DGF) module to adaptively select frequency components, thereby mitigating interference from background noise. For high intraclass variance, the class center aware block (CCAB) performs class-level contextual modeling with spatial information integration. Additionally, the rotary position embedding (RoPE) is incorporated into vanilla attention to indirectly model the positional and distance relationships of geographic target objects. Extensive experimental results on two widely used datasets demonstrate that RoGLSNet outperforms the state-of-the-art (SOTA) segmentation methods. The code is available at <uri>https://github.com/bai101315/RoGLSNet</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11154049/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11154049/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RoGLSNet: An Efficient Global–Local Scene Awareness Network With Rotary Position Embedding for Remote Image Segmentation
Accurate segmentation of very high-resolution remote sensing images is vital for downstream tasks. Most semantic segmentation methods fail to fully consider the inherent characteristics of the images, such as intricate backgrounds, significant intraclass variance, and spatial interdependence of geographic object distribution. To address these challenges, we propose an efficient global–local scene awareness network with rotary position embedding (RoGLSNet). Specifically, we introduce the dynamic global filter (DGF) module to adaptively select frequency components, thereby mitigating interference from background noise. For high intraclass variance, the class center aware block (CCAB) performs class-level contextual modeling with spatial information integration. Additionally, the rotary position embedding (RoPE) is incorporated into vanilla attention to indirectly model the positional and distance relationships of geographic target objects. Extensive experimental results on two widely used datasets demonstrate that RoGLSNet outperforms the state-of-the-art (SOTA) segmentation methods. The code is available at https://github.com/bai101315/RoGLSNet