{"title":"基于信任增强分布式卡尔曼滤波的传感器网络故障诊断","authors":"Khadija Shaheen;Apoorva Chawla;Pierluigi Salvo Rossi","doi":"10.1109/TSIPN.2025.3606167","DOIUrl":null,"url":null,"abstract":"Sensor fault diagnosis is a critical issue in Sensor Networks (SNs) since sensor failures could lead to significant errors in data fusion and state estimation. To address this challenge, we propose a trust-enhanced distributed Kalman filter (TeDKF) designed to improve the state estimation performance of SNs under sensor faults. The TeDKF framework incorporates a novel incremental density-based (IDB) clustering mechanism into the distributed diffusion Kalman filter (DDKF) structure, which can support an intermediate-level feature (innovations) exchange and effectively fuses reliable sensor nodes. Unlike conventional clustering schemes, IDB clustering does not rely on majority voting, where more than half of the nodes must be reliable. Instead, it can effectively detect and eliminate faulty sensors even in scenarios where the majority of nodes are compromised. This dynamic clustering builds-up trust by selectively grouping the reliable nodes based on evolving normal system behavior, which is considered as a dynamic trust reference to detect anomalies and isolate faulty sensors irrespective of majority voting. The experimental results show that TeDKF significantly reduces estimation errors and enhances fault tolerance compared to the traditional Kalman filtering technique. It can handle different sensor faults, like bias, drift, noise, and stuck faults, especially in scenarios where most nodes are faulty.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"1178-1187"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust-Enhanced Distributed Kalman Filtering for Sensor Fault Diagnosis in Sensor Networks\",\"authors\":\"Khadija Shaheen;Apoorva Chawla;Pierluigi Salvo Rossi\",\"doi\":\"10.1109/TSIPN.2025.3606167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor fault diagnosis is a critical issue in Sensor Networks (SNs) since sensor failures could lead to significant errors in data fusion and state estimation. To address this challenge, we propose a trust-enhanced distributed Kalman filter (TeDKF) designed to improve the state estimation performance of SNs under sensor faults. The TeDKF framework incorporates a novel incremental density-based (IDB) clustering mechanism into the distributed diffusion Kalman filter (DDKF) structure, which can support an intermediate-level feature (innovations) exchange and effectively fuses reliable sensor nodes. Unlike conventional clustering schemes, IDB clustering does not rely on majority voting, where more than half of the nodes must be reliable. Instead, it can effectively detect and eliminate faulty sensors even in scenarios where the majority of nodes are compromised. This dynamic clustering builds-up trust by selectively grouping the reliable nodes based on evolving normal system behavior, which is considered as a dynamic trust reference to detect anomalies and isolate faulty sensors irrespective of majority voting. The experimental results show that TeDKF significantly reduces estimation errors and enhances fault tolerance compared to the traditional Kalman filtering technique. It can handle different sensor faults, like bias, drift, noise, and stuck faults, especially in scenarios where most nodes are faulty.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"1178-1187\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11150753/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11150753/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Trust-Enhanced Distributed Kalman Filtering for Sensor Fault Diagnosis in Sensor Networks
Sensor fault diagnosis is a critical issue in Sensor Networks (SNs) since sensor failures could lead to significant errors in data fusion and state estimation. To address this challenge, we propose a trust-enhanced distributed Kalman filter (TeDKF) designed to improve the state estimation performance of SNs under sensor faults. The TeDKF framework incorporates a novel incremental density-based (IDB) clustering mechanism into the distributed diffusion Kalman filter (DDKF) structure, which can support an intermediate-level feature (innovations) exchange and effectively fuses reliable sensor nodes. Unlike conventional clustering schemes, IDB clustering does not rely on majority voting, where more than half of the nodes must be reliable. Instead, it can effectively detect and eliminate faulty sensors even in scenarios where the majority of nodes are compromised. This dynamic clustering builds-up trust by selectively grouping the reliable nodes based on evolving normal system behavior, which is considered as a dynamic trust reference to detect anomalies and isolate faulty sensors irrespective of majority voting. The experimental results show that TeDKF significantly reduces estimation errors and enhances fault tolerance compared to the traditional Kalman filtering technique. It can handle different sensor faults, like bias, drift, noise, and stuck faults, especially in scenarios where most nodes are faulty.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.