PhaseMamba:一种基于mamba的地震相位采集和检测深度学习模型

IF 4.4
Yunfei Zhou;Haoran Ren;Haofeng Wu
{"title":"PhaseMamba:一种基于mamba的地震相位采集和检测深度学习模型","authors":"Yunfei Zhou;Haoran Ren;Haofeng Wu","doi":"10.1109/LGRS.2025.3603915","DOIUrl":null,"url":null,"abstract":"Seismic phase picking is a critical task for earthquake detection and localization, where traditional methods rely on manual parameter tuning and have great difficulty to capture complex temporal features. In this letter, we propose PhaseMamba, an automated seismic phase picking and detection model that leverages deep learning through a U-shaped architecture with skip connections for effective time-domain seismic signal analysis, while incorporating a state-space Mamba model to enhance long-term contextual dependency extraction capabilities. For training, validation, and testing, we utilize the open-source global seismic dataset, Stanford Earthquake Dataset (STEAD), which provides a diverse range of high-quality seismic waveforms. Comprehensive experiments are conducted on this dataset to evaluate the model’s performance. The results demonstrate that PhaseMamba achieves superior performance in P-wave arrival picking compared with all state-of-the-art models (PhaseNet, EQTransformer, and SeisT), while showing comparable or slightly lower performance in S-wave arrival picking. These findings suggest that PhaseMamba is a promising tool for advancing seismic phase picking and contributing to broader seismic research applications.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhaseMamba: A Mamba-Based Deep Learning Model for Seismic Phase Picking and Detection\",\"authors\":\"Yunfei Zhou;Haoran Ren;Haofeng Wu\",\"doi\":\"10.1109/LGRS.2025.3603915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic phase picking is a critical task for earthquake detection and localization, where traditional methods rely on manual parameter tuning and have great difficulty to capture complex temporal features. In this letter, we propose PhaseMamba, an automated seismic phase picking and detection model that leverages deep learning through a U-shaped architecture with skip connections for effective time-domain seismic signal analysis, while incorporating a state-space Mamba model to enhance long-term contextual dependency extraction capabilities. For training, validation, and testing, we utilize the open-source global seismic dataset, Stanford Earthquake Dataset (STEAD), which provides a diverse range of high-quality seismic waveforms. Comprehensive experiments are conducted on this dataset to evaluate the model’s performance. The results demonstrate that PhaseMamba achieves superior performance in P-wave arrival picking compared with all state-of-the-art models (PhaseNet, EQTransformer, and SeisT), while showing comparable or slightly lower performance in S-wave arrival picking. These findings suggest that PhaseMamba is a promising tool for advancing seismic phase picking and contributing to broader seismic research applications.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11143210/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11143210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震相位采集是地震探测和定位的关键环节,传统的方法依赖于人工参数调优,难以捕获复杂的时间特征。在这封信中,我们提出了PhaseMamba,这是一种自动地震相位采集和检测模型,通过u形结构和跳跃连接利用深度学习进行有效的时域地震信号分析,同时结合状态空间Mamba模型来增强长期上下文依赖性提取能力。对于训练,验证和测试,我们利用开源的全球地震数据集,斯坦福地震数据集(STEAD),它提供了各种高质量的地震波形。在此数据集上进行了全面的实验,以评估模型的性能。结果表明,与所有最先进的模型(PhaseNet、EQTransformer和SeisT)相比,PhaseMamba在p波到达拾取方面具有优越的性能,而在s波到达拾取方面则表现出相当或略低的性能。这些发现表明,PhaseMamba是一种很有前途的工具,可以推进地震相位提取,并有助于更广泛的地震研究应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PhaseMamba: A Mamba-Based Deep Learning Model for Seismic Phase Picking and Detection
Seismic phase picking is a critical task for earthquake detection and localization, where traditional methods rely on manual parameter tuning and have great difficulty to capture complex temporal features. In this letter, we propose PhaseMamba, an automated seismic phase picking and detection model that leverages deep learning through a U-shaped architecture with skip connections for effective time-domain seismic signal analysis, while incorporating a state-space Mamba model to enhance long-term contextual dependency extraction capabilities. For training, validation, and testing, we utilize the open-source global seismic dataset, Stanford Earthquake Dataset (STEAD), which provides a diverse range of high-quality seismic waveforms. Comprehensive experiments are conducted on this dataset to evaluate the model’s performance. The results demonstrate that PhaseMamba achieves superior performance in P-wave arrival picking compared with all state-of-the-art models (PhaseNet, EQTransformer, and SeisT), while showing comparable or slightly lower performance in S-wave arrival picking. These findings suggest that PhaseMamba is a promising tool for advancing seismic phase picking and contributing to broader seismic research applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信