通过调节ZrO2支持晶相来控制Cu单原子配位环境以增强CO2电还原

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhuojun Yang, , , Jiaqi Zhang, , , Xin Tan, , , Haojie Zhu, , , Lekai Xu, , , Xueyan Wu, , , Zhiyuan Xu, , , Jixi Guo*, , , Dianzeng Jia*, , and , Chen Chen*, 
{"title":"通过调节ZrO2支持晶相来控制Cu单原子配位环境以增强CO2电还原","authors":"Zhuojun Yang,&nbsp;, ,&nbsp;Jiaqi Zhang,&nbsp;, ,&nbsp;Xin Tan,&nbsp;, ,&nbsp;Haojie Zhu,&nbsp;, ,&nbsp;Lekai Xu,&nbsp;, ,&nbsp;Xueyan Wu,&nbsp;, ,&nbsp;Zhiyuan Xu,&nbsp;, ,&nbsp;Jixi Guo*,&nbsp;, ,&nbsp;Dianzeng Jia*,&nbsp;, and ,&nbsp;Chen Chen*,&nbsp;","doi":"10.1021/jacs.5c13661","DOIUrl":null,"url":null,"abstract":"<p >For electrochemical CO<sub>2</sub> reduction (ECR), high-precision manipulation of the single-atomic catalytic centers is significant and remains an issue. Here, we report a support crystal phase engineering (SCPE) strategy by regulating the crystal phase of the ZrO<sub>2</sub> support to modulate its interaction with Cu atomic centers, synergizing the coordination environment of Cu atoms and the local microenvironment for ECR. Specifically, tetragonal ZrO<sub>2</sub> (tZrO<sub>2</sub>) supports a Cu<sub>1</sub>O<sub>3</sub> structure, and the rich bridging O atoms at the tZrO<sub>2</sub> surface could serve as basic sites. In contrast, the monoclinic ZrO<sub>2</sub> (mZrO<sub>2</sub>) forming a Cu<sub>1</sub>O<sub>4</sub> structure has weak basicity. The Cu<sub>1</sub>O<sub>3</sub>–tZrO<sub>2</sub> site displays a high activity for ECR to methane, with 3.16 (FE<sub>CH<sub>4</sub></sub>) and 2.54 (<i>j</i><sub>CH<sub>4</sub></sub>) times higher than those of the Cu<sub>1</sub>O<sub>4</sub>–mZrO<sub>2</sub> counterpart. Density functional theory (DFT) and attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR–SEIRAS) reveal that the dynamic *OH on Cu<sub>1</sub>O<sub>3</sub>–tZrO<sub>2</sub> helps to significantly lower the Gibbs free-energy change (Δ<i>G</i>) for the rate-determining step (RDS). The rich basic sites on tZrO<sub>2</sub> could also facilitate the adsorption and activation of CO<sub>2</sub> and create an H<sub>2</sub>O-expelling local microenvironment to suppress the competing hydrogen evolution reaction. Our work demonstrates a facile strategy to simultaneously manipulate the coordination environment of the active centers and the local microenvironment for the catalytic reaction.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 39","pages":"35985–35994"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating the Coordination Environment of Cu Single Atoms via Regulating ZrO2 Support Crystal Phases for Enhanced CO2 Electroreduction\",\"authors\":\"Zhuojun Yang,&nbsp;, ,&nbsp;Jiaqi Zhang,&nbsp;, ,&nbsp;Xin Tan,&nbsp;, ,&nbsp;Haojie Zhu,&nbsp;, ,&nbsp;Lekai Xu,&nbsp;, ,&nbsp;Xueyan Wu,&nbsp;, ,&nbsp;Zhiyuan Xu,&nbsp;, ,&nbsp;Jixi Guo*,&nbsp;, ,&nbsp;Dianzeng Jia*,&nbsp;, and ,&nbsp;Chen Chen*,&nbsp;\",\"doi\":\"10.1021/jacs.5c13661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >For electrochemical CO<sub>2</sub> reduction (ECR), high-precision manipulation of the single-atomic catalytic centers is significant and remains an issue. Here, we report a support crystal phase engineering (SCPE) strategy by regulating the crystal phase of the ZrO<sub>2</sub> support to modulate its interaction with Cu atomic centers, synergizing the coordination environment of Cu atoms and the local microenvironment for ECR. Specifically, tetragonal ZrO<sub>2</sub> (tZrO<sub>2</sub>) supports a Cu<sub>1</sub>O<sub>3</sub> structure, and the rich bridging O atoms at the tZrO<sub>2</sub> surface could serve as basic sites. In contrast, the monoclinic ZrO<sub>2</sub> (mZrO<sub>2</sub>) forming a Cu<sub>1</sub>O<sub>4</sub> structure has weak basicity. The Cu<sub>1</sub>O<sub>3</sub>–tZrO<sub>2</sub> site displays a high activity for ECR to methane, with 3.16 (FE<sub>CH<sub>4</sub></sub>) and 2.54 (<i>j</i><sub>CH<sub>4</sub></sub>) times higher than those of the Cu<sub>1</sub>O<sub>4</sub>–mZrO<sub>2</sub> counterpart. Density functional theory (DFT) and attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR–SEIRAS) reveal that the dynamic *OH on Cu<sub>1</sub>O<sub>3</sub>–tZrO<sub>2</sub> helps to significantly lower the Gibbs free-energy change (Δ<i>G</i>) for the rate-determining step (RDS). The rich basic sites on tZrO<sub>2</sub> could also facilitate the adsorption and activation of CO<sub>2</sub> and create an H<sub>2</sub>O-expelling local microenvironment to suppress the competing hydrogen evolution reaction. Our work demonstrates a facile strategy to simultaneously manipulate the coordination environment of the active centers and the local microenvironment for the catalytic reaction.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 39\",\"pages\":\"35985–35994\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c13661\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c13661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于电化学CO2还原(ECR),单原子催化中心的高精度操作是重要的,仍然是一个问题。本文报道了一种支持物晶相工程(SCPE)策略,通过调节ZrO2支持物的晶相来调节其与Cu原子中心的相互作用,协同Cu原子的配位环境和ECR的局部微环境。具体来说,四边形ZrO2 (tZrO2)支持cu103结构,并且在tZrO2表面丰富的桥接O原子可以作为基位。而形成cu104结构的单斜ZrO2 (mZrO2)碱性较弱。cu10o3 - tzro2位点对甲烷的ECR活性较高,分别是对应cu10o4 - mzro2位点的3.16 (FECH4)和2.54 (jCH4)倍。密度泛函数理论(DFT)和衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)表明,cu103 - tzro2上的动态*OH有助于显著降低速率决定步骤(RDS)的吉布斯自由能变化(ΔG)。同时,由于tZrO2上的富碱性位点能够促进CO2的吸附和活化,从而形成一个排除h2o的局部微环境,从而抑制竞争性析氢反应。我们的工作展示了一种简单的策略,可以同时操纵活性中心的协调环境和催化反应的局部微环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Manipulating the Coordination Environment of Cu Single Atoms via Regulating ZrO2 Support Crystal Phases for Enhanced CO2 Electroreduction

Manipulating the Coordination Environment of Cu Single Atoms via Regulating ZrO2 Support Crystal Phases for Enhanced CO2 Electroreduction

Manipulating the Coordination Environment of Cu Single Atoms via Regulating ZrO2 Support Crystal Phases for Enhanced CO2 Electroreduction

For electrochemical CO2 reduction (ECR), high-precision manipulation of the single-atomic catalytic centers is significant and remains an issue. Here, we report a support crystal phase engineering (SCPE) strategy by regulating the crystal phase of the ZrO2 support to modulate its interaction with Cu atomic centers, synergizing the coordination environment of Cu atoms and the local microenvironment for ECR. Specifically, tetragonal ZrO2 (tZrO2) supports a Cu1O3 structure, and the rich bridging O atoms at the tZrO2 surface could serve as basic sites. In contrast, the monoclinic ZrO2 (mZrO2) forming a Cu1O4 structure has weak basicity. The Cu1O3–tZrO2 site displays a high activity for ECR to methane, with 3.16 (FECH4) and 2.54 (jCH4) times higher than those of the Cu1O4–mZrO2 counterpart. Density functional theory (DFT) and attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR–SEIRAS) reveal that the dynamic *OH on Cu1O3–tZrO2 helps to significantly lower the Gibbs free-energy change (ΔG) for the rate-determining step (RDS). The rich basic sites on tZrO2 could also facilitate the adsorption and activation of CO2 and create an H2O-expelling local microenvironment to suppress the competing hydrogen evolution reaction. Our work demonstrates a facile strategy to simultaneously manipulate the coordination environment of the active centers and the local microenvironment for the catalytic reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信