努力。[1]宇宙大尺度结构有效场论的快速可微仿真器

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Marco Bonici, Guido D'Amico, Julien Bel and Carmelita Carbone
{"title":"努力。[1]宇宙大尺度结构有效场论的快速可微仿真器","authors":"Marco Bonici, Guido D'Amico, Julien Bel and Carmelita Carbone","doi":"10.1088/1475-7516/2025/09/044","DOIUrl":null,"url":null,"abstract":"We present the official release of the EFfective Field theORy surrogaTe (Effort.jl), a novel and efficient emulator designed for the Effective Field Theory of Large-Scale Structure (EFTofLSS). This tool combines state-of-the-art numerical methods and clever preprocessing strategies to achieve exceptional computational performance without sacrificing accuracy. To validate the emulator reliability, we compare Bayesian posteriors sampled using Effort.jl via Hamiltonian MonteCarlo methods to the ones sampled using the widely-used pybird code, via the Metropolis-Hastings sampler. On a large-volume set of simulations, and on the BOSS dataset, the comparison confirms excellent agreement, with deviations compatible with MonteCarlo noise. Looking ahead, Effort.jl is poised to analyze next-generation cosmological datasets and to support joint analyses with complementary tools.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"17 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effort.jl: a fast and differentiable emulator for the Effective Field Theory of the Large Scale Structure of the Universe\",\"authors\":\"Marco Bonici, Guido D'Amico, Julien Bel and Carmelita Carbone\",\"doi\":\"10.1088/1475-7516/2025/09/044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the official release of the EFfective Field theORy surrogaTe (Effort.jl), a novel and efficient emulator designed for the Effective Field Theory of Large-Scale Structure (EFTofLSS). This tool combines state-of-the-art numerical methods and clever preprocessing strategies to achieve exceptional computational performance without sacrificing accuracy. To validate the emulator reliability, we compare Bayesian posteriors sampled using Effort.jl via Hamiltonian MonteCarlo methods to the ones sampled using the widely-used pybird code, via the Metropolis-Hastings sampler. On a large-volume set of simulations, and on the BOSS dataset, the comparison confirms excellent agreement, with deviations compatible with MonteCarlo noise. Looking ahead, Effort.jl is poised to analyze next-generation cosmological datasets and to support joint analyses with complementary tools.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/09/044\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/044","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了有效场论替代努力的正式发布。基于大尺度结构有效场理论(EFTofLSS)的新型高效仿真器。该工具结合了最先进的数值方法和巧妙的预处理策略,在不牺牲精度的情况下实现卓越的计算性能。为了验证仿真器的可靠性,我们比较了使用Effort采样的贝叶斯后验。使用广泛使用的pybird代码,通过Metropolis-Hastings采样器进行采样。在大容量的模拟集和BOSS数据集上,比较证实了非常好的一致性,偏差与蒙特卡罗噪声兼容。展望未来,努力。Jl准备分析下一代宇宙学数据集,并支持与互补工具的联合分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effort.jl: a fast and differentiable emulator for the Effective Field Theory of the Large Scale Structure of the Universe
We present the official release of the EFfective Field theORy surrogaTe (Effort.jl), a novel and efficient emulator designed for the Effective Field Theory of Large-Scale Structure (EFTofLSS). This tool combines state-of-the-art numerical methods and clever preprocessing strategies to achieve exceptional computational performance without sacrificing accuracy. To validate the emulator reliability, we compare Bayesian posteriors sampled using Effort.jl via Hamiltonian MonteCarlo methods to the ones sampled using the widely-used pybird code, via the Metropolis-Hastings sampler. On a large-volume set of simulations, and on the BOSS dataset, the comparison confirms excellent agreement, with deviations compatible with MonteCarlo noise. Looking ahead, Effort.jl is poised to analyze next-generation cosmological datasets and to support joint analyses with complementary tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信