Aaron Wing Cheung Kwok, Heejung Shim, Davis J. McCarthy
{"title":"分层的、基于计数的模型突出了scATAC-seq数据分析中的挑战,并指出了提取更精细分辨率信息的机会","authors":"Aaron Wing Cheung Kwok, Heejung Shim, Davis J. McCarthy","doi":"10.1186/s13059-025-03735-y","DOIUrl":null,"url":null,"abstract":"Data from Single-cell Assay for Transposase Accessible Chromatin with Sequencing (scATAC-seq) is highly sparse. While current computational methods feature a range of transformation procedures to extract meaningful information, major challenges remain. Here, we discuss the major scATAC-seq data analysis challenges such as sequencing depth normalization and region-specific biases. We present a hierarchical count model that is motivated by the data generating process of scATAC-seq data. Our simulations show that current scATAC-seq data, while clearly containing physical single-cell resolution, are too sparse to infer true informational-level single-cell, single-region of chromatin accessibility states. While the broad utility of scATAC-seq at a cell type level is undeniable, describing it as fully resolving chromatin accessibility at single-cell resolution, particularly at individual locus level, may overstate the level of detail currently achievable. We conclude that chromatin accessibility profiling at true single-cell, single-region resolution is challenging with current data sensitivity, but that it may be achieved with promising developments in optimizing the efficiency of scATAC-seq assays.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hierarchical, count-based model highlights challenges in scATAC-seq data analysis and points to opportunities to extract finer-resolution information\",\"authors\":\"Aaron Wing Cheung Kwok, Heejung Shim, Davis J. McCarthy\",\"doi\":\"10.1186/s13059-025-03735-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data from Single-cell Assay for Transposase Accessible Chromatin with Sequencing (scATAC-seq) is highly sparse. While current computational methods feature a range of transformation procedures to extract meaningful information, major challenges remain. Here, we discuss the major scATAC-seq data analysis challenges such as sequencing depth normalization and region-specific biases. We present a hierarchical count model that is motivated by the data generating process of scATAC-seq data. Our simulations show that current scATAC-seq data, while clearly containing physical single-cell resolution, are too sparse to infer true informational-level single-cell, single-region of chromatin accessibility states. While the broad utility of scATAC-seq at a cell type level is undeniable, describing it as fully resolving chromatin accessibility at single-cell resolution, particularly at individual locus level, may overstate the level of detail currently achievable. We conclude that chromatin accessibility profiling at true single-cell, single-region resolution is challenging with current data sensitivity, but that it may be achieved with promising developments in optimizing the efficiency of scATAC-seq assays.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03735-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03735-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A hierarchical, count-based model highlights challenges in scATAC-seq data analysis and points to opportunities to extract finer-resolution information
Data from Single-cell Assay for Transposase Accessible Chromatin with Sequencing (scATAC-seq) is highly sparse. While current computational methods feature a range of transformation procedures to extract meaningful information, major challenges remain. Here, we discuss the major scATAC-seq data analysis challenges such as sequencing depth normalization and region-specific biases. We present a hierarchical count model that is motivated by the data generating process of scATAC-seq data. Our simulations show that current scATAC-seq data, while clearly containing physical single-cell resolution, are too sparse to infer true informational-level single-cell, single-region of chromatin accessibility states. While the broad utility of scATAC-seq at a cell type level is undeniable, describing it as fully resolving chromatin accessibility at single-cell resolution, particularly at individual locus level, may overstate the level of detail currently achievable. We conclude that chromatin accessibility profiling at true single-cell, single-region resolution is challenging with current data sensitivity, but that it may be achieved with promising developments in optimizing the efficiency of scATAC-seq assays.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.