用酸性共晶电解液实现高性能四电子锌碘电池。

IF 16.9
Yuhuan Yan, Yucong Jiao, Peiyi Wu
{"title":"用酸性共晶电解液实现高性能四电子锌碘电池。","authors":"Yuhuan Yan, Yucong Jiao, Peiyi Wu","doi":"10.1002/anie.202515633","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving multi-electron redox reaction via halide ions and protons is promising for Zn─I<sub>2</sub> batteries, yet their practical application is hindered by halide ion and proton corrosion, sluggish iodine redox kinetics and poor redox reversibility. Here, a deep eutectic solvent (ZPDES) composed with concentrated ZnCl<sub>2</sub> and H<sub>3</sub>PO<sub>4</sub> is engineered as the electrolyte for high performance Zn-I<sub>2</sub> batteries. The chloride atom (Cl) and active hydrogen of H<sub>3</sub>PO<sub>4</sub> in DES form hydrogen bonds (Cl⋯H─O) to mitigate the corrosion of Cl<sup>-</sup> and protons. Therefore, while achieving four-electron transfer by Cl<sup>-</sup>, the protons in DES can accelerate redox reaction kinetics and reduce I<sub>3</sub> <sup>-</sup> formation for improved reversibility. Moreover, the proton can promote the (002) texture formation and reduce by-products on Zn anode. As a result, the Zn─I<sub>2</sub> battery with ZPDES delivers a high specific capacity of 576 mA h g<sup>-1</sup> at 0.5 A g<sup>-1</sup> after 320 cycles, and maintains a capacity retention of 100% over 20,000 cycles at 7 A g<sup>-1</sup>.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515633"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing High Performance Four-Electron Zinc-Iodine Batteries with Acidic Eutectic Electrolyte.\",\"authors\":\"Yuhuan Yan, Yucong Jiao, Peiyi Wu\",\"doi\":\"10.1002/anie.202515633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Achieving multi-electron redox reaction via halide ions and protons is promising for Zn─I<sub>2</sub> batteries, yet their practical application is hindered by halide ion and proton corrosion, sluggish iodine redox kinetics and poor redox reversibility. Here, a deep eutectic solvent (ZPDES) composed with concentrated ZnCl<sub>2</sub> and H<sub>3</sub>PO<sub>4</sub> is engineered as the electrolyte for high performance Zn-I<sub>2</sub> batteries. The chloride atom (Cl) and active hydrogen of H<sub>3</sub>PO<sub>4</sub> in DES form hydrogen bonds (Cl⋯H─O) to mitigate the corrosion of Cl<sup>-</sup> and protons. Therefore, while achieving four-electron transfer by Cl<sup>-</sup>, the protons in DES can accelerate redox reaction kinetics and reduce I<sub>3</sub> <sup>-</sup> formation for improved reversibility. Moreover, the proton can promote the (002) texture formation and reduce by-products on Zn anode. As a result, the Zn─I<sub>2</sub> battery with ZPDES delivers a high specific capacity of 576 mA h g<sup>-1</sup> at 0.5 A g<sup>-1</sup> after 320 cycles, and maintains a capacity retention of 100% over 20,000 cycles at 7 A g<sup>-1</sup>.</p>\",\"PeriodicalId\":520556,\"journal\":{\"name\":\"Angewandte Chemie (International ed. in English)\",\"volume\":\" \",\"pages\":\"e202515633\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie (International ed. in English)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用卤化物离子和质子进行多电子氧化还原反应对锌离子电池有很大的应用前景,但卤化物离子和质子的腐蚀、碘的氧化还原动力学缓慢和氧化还原可逆性差阻碍了它们的实际应用。本文设计了一种由浓ZnCl2和H3PO4组成的深共晶溶剂(ZPDES)作为高性能Zn-I2电池的电解质。DES中的氯原子(Cl)和H3PO4的活性氢形成氢键(Cl⋯H─O),以减轻Cl-和质子的腐蚀。因此,在通过Cl-实现四电子转移的同时,DES中的质子可以加速氧化还原反应动力学,减少I3 -的生成,从而提高可逆性。此外,质子能促进锌阳极上(002)织构的形成,减少副产物。因此,采用ZPDES的Zn─I2电池在经过320次循环后,在0.5 a g-1下可提供576 mA h -1的高比容量,并且在7 a g-1下可在20,000次循环中保持100%的容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing High Performance Four-Electron Zinc-Iodine Batteries with Acidic Eutectic Electrolyte.

Achieving multi-electron redox reaction via halide ions and protons is promising for Zn─I2 batteries, yet their practical application is hindered by halide ion and proton corrosion, sluggish iodine redox kinetics and poor redox reversibility. Here, a deep eutectic solvent (ZPDES) composed with concentrated ZnCl2 and H3PO4 is engineered as the electrolyte for high performance Zn-I2 batteries. The chloride atom (Cl) and active hydrogen of H3PO4 in DES form hydrogen bonds (Cl⋯H─O) to mitigate the corrosion of Cl- and protons. Therefore, while achieving four-electron transfer by Cl-, the protons in DES can accelerate redox reaction kinetics and reduce I3 - formation for improved reversibility. Moreover, the proton can promote the (002) texture formation and reduce by-products on Zn anode. As a result, the Zn─I2 battery with ZPDES delivers a high specific capacity of 576 mA h g-1 at 0.5 A g-1 after 320 cycles, and maintains a capacity retention of 100% over 20,000 cycles at 7 A g-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信