基于机器学习的预β HDL和细胞因子作为血浆生物标志物预测冠心病的模型。

Seema Singh Saharan, Kate Townsend Creasy, Lauren Birnbaum, Eveline O Stock, Jelena Mustra Rakic, Xiaoli Tian, Arun Prakash, Mary Malloy, John Kane
{"title":"基于机器学习的预β HDL和细胞因子作为血浆生物标志物预测冠心病的模型。","authors":"Seema Singh Saharan, Kate Townsend Creasy, Lauren Birnbaum, Eveline O Stock, Jelena Mustra Rakic, Xiaoli Tian, Arun Prakash, Mary Malloy, John Kane","doi":"10.1007/978-3-031-94950-0_13","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary heart disease (CHD) remains the leading cause of global mortality, per the Center for Disease Control. Thus, it is important to develop novel and improved methods for CHD prediction, detection, and early intervention. Our study aims to assess the predictive efficacy of plasma Preβ High-Density Lipoprotein (HDL) and cytokines as biomarkers of CHD, utilizing machine learning (ML) algorithms to enhance risk predictions. In a case-control study, we explored the potential of 35 plasma cytokines in conjunction with Preβ HDL levels to discriminate \"at risk\" CHD patients from non-affected, control subjects. The dataset contains data on 108 individuals and is divided into two cohorts: 41 individuals with CHD and 67 individuals in the Control group. Leveraging random forest, coupled with feature engineering and importance techniques, the dataset underwent synthetic augmentation, yielding a total of 20,000 samples. In comparison to the Control group, individuals in the CHD group exhibited significantly higher levels of Plasma Preβ HDL, with mean values of 13.5 mg/dL apoA1 and 10.2 mg/dL apoA1 respectively (p < 0.05). The second random forest classifier incorporating: Preβ HDL, FGF-Basic, MCP-1, Eotaxin, IL-10, IL-9, IL-1β achieved a F1 score, prediction accuracy, and AUROC score of 100%. The remarkable results derived from the random forest classifiers underscore the need for further exploration into the predictive potential of Preβ HDL and plasma cytokines in the development of CHD, using ML methodologies. Further investigation may lead to the identification of novel drug targets for more effective therapeutic interventions.</p>","PeriodicalId":93614,"journal":{"name":"Proceedings. International Conference on Computational Science and Computational Intelligence","volume":"2507 ","pages":"139-153"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12433607/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Model for Predicting Coronary Heart Disease Using Preβ HDL and Cytokines as Plasma Biomarkers.\",\"authors\":\"Seema Singh Saharan, Kate Townsend Creasy, Lauren Birnbaum, Eveline O Stock, Jelena Mustra Rakic, Xiaoli Tian, Arun Prakash, Mary Malloy, John Kane\",\"doi\":\"10.1007/978-3-031-94950-0_13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary heart disease (CHD) remains the leading cause of global mortality, per the Center for Disease Control. Thus, it is important to develop novel and improved methods for CHD prediction, detection, and early intervention. Our study aims to assess the predictive efficacy of plasma Preβ High-Density Lipoprotein (HDL) and cytokines as biomarkers of CHD, utilizing machine learning (ML) algorithms to enhance risk predictions. In a case-control study, we explored the potential of 35 plasma cytokines in conjunction with Preβ HDL levels to discriminate \\\"at risk\\\" CHD patients from non-affected, control subjects. The dataset contains data on 108 individuals and is divided into two cohorts: 41 individuals with CHD and 67 individuals in the Control group. Leveraging random forest, coupled with feature engineering and importance techniques, the dataset underwent synthetic augmentation, yielding a total of 20,000 samples. In comparison to the Control group, individuals in the CHD group exhibited significantly higher levels of Plasma Preβ HDL, with mean values of 13.5 mg/dL apoA1 and 10.2 mg/dL apoA1 respectively (p < 0.05). The second random forest classifier incorporating: Preβ HDL, FGF-Basic, MCP-1, Eotaxin, IL-10, IL-9, IL-1β achieved a F1 score, prediction accuracy, and AUROC score of 100%. The remarkable results derived from the random forest classifiers underscore the need for further exploration into the predictive potential of Preβ HDL and plasma cytokines in the development of CHD, using ML methodologies. Further investigation may lead to the identification of novel drug targets for more effective therapeutic interventions.</p>\",\"PeriodicalId\":93614,\"journal\":{\"name\":\"Proceedings. International Conference on Computational Science and Computational Intelligence\",\"volume\":\"2507 \",\"pages\":\"139-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12433607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Computational Science and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-94950-0_13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Computational Science and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-94950-0_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据疾病控制中心的数据,冠心病(CHD)仍然是全球死亡的主要原因。因此,开发新的和改进的方法来预测、检测和早期干预冠心病是很重要的。我们的研究旨在评估血浆前β高密度脂蛋白(HDL)和细胞因子作为冠心病生物标志物的预测功效,利用机器学习(ML)算法来增强风险预测。在一项病例对照研究中,我们探讨了35种血浆细胞因子与pre - β HDL水平结合的潜力,以区分“有风险”的冠心病患者和未受影响的对照组。该数据集包含108人的数据,分为两组:41名冠心病患者和67名对照组。利用随机森林,结合特征工程和重要性技术,对数据集进行了合成增强,总共产生了20,000个样本。与对照组相比,冠心病患者血浆β前HDL水平显著升高,apoA1平均值分别为13.5 mg/dL和10.2 mg/dL (p < 0.05)。第二个随机森林分类器包含:Preβ HDL, FGF-Basic, MCP-1, Eotaxin, IL-10, IL-9, IL-1β,获得F1评分,预测精度和AUROC评分为100%。来自随机森林分类器的显著结果强调了进一步探索Preβ HDL和血浆细胞因子在冠心病发展中的预测潜力的需要,使用ML方法。进一步的研究可能会导致新的药物靶点的识别,更有效的治疗干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Model for Predicting Coronary Heart Disease Using Preβ HDL and Cytokines as Plasma Biomarkers.

Coronary heart disease (CHD) remains the leading cause of global mortality, per the Center for Disease Control. Thus, it is important to develop novel and improved methods for CHD prediction, detection, and early intervention. Our study aims to assess the predictive efficacy of plasma Preβ High-Density Lipoprotein (HDL) and cytokines as biomarkers of CHD, utilizing machine learning (ML) algorithms to enhance risk predictions. In a case-control study, we explored the potential of 35 plasma cytokines in conjunction with Preβ HDL levels to discriminate "at risk" CHD patients from non-affected, control subjects. The dataset contains data on 108 individuals and is divided into two cohorts: 41 individuals with CHD and 67 individuals in the Control group. Leveraging random forest, coupled with feature engineering and importance techniques, the dataset underwent synthetic augmentation, yielding a total of 20,000 samples. In comparison to the Control group, individuals in the CHD group exhibited significantly higher levels of Plasma Preβ HDL, with mean values of 13.5 mg/dL apoA1 and 10.2 mg/dL apoA1 respectively (p < 0.05). The second random forest classifier incorporating: Preβ HDL, FGF-Basic, MCP-1, Eotaxin, IL-10, IL-9, IL-1β achieved a F1 score, prediction accuracy, and AUROC score of 100%. The remarkable results derived from the random forest classifiers underscore the need for further exploration into the predictive potential of Preβ HDL and plasma cytokines in the development of CHD, using ML methodologies. Further investigation may lead to the identification of novel drug targets for more effective therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信