Victoria L Tiase, Patrice Hicks, Haddy Bah, Ainsley Snow, Devin Mann, David A Feldstein, Wendy Halm, Paul D Smith, Rachel Hess
{"title":"使用临床预测规则进行急性呼吸道感染管理的护理绩效:基于病例的模拟。","authors":"Victoria L Tiase, Patrice Hicks, Haddy Bah, Ainsley Snow, Devin Mann, David A Feldstein, Wendy Halm, Paul D Smith, Rachel Hess","doi":"10.1055/a-2700-7036","DOIUrl":null,"url":null,"abstract":"<p><p>Background Overuse and misuse of antibiotics is an urgent healthcare problem and one of the key factors in antibiotic resistance. Validated clinical prediction rules have shown effectiveness in guiding providers to an appropriate diagnosis and identifying when antibiotics are the recommended choice for treatment. Objective We aimed to study the relative ability of registered nurses using clinical prediction rules to guide the management of acute respiratory infections in a simulated environment compared to practicing primary care physicians. Design We evaluated a case-based simulation of the diagnosis and treatment for acute respiratory infections using clinical prediction rules. As a secondary outcome, we examined nursing self-efficacy by administering a survey before and after case evaluations. Participants Participants included 40 registered nurses from three academic medical centers and five primary care physicians as comparators. Participants evaluated six simulated case studies, three for patients presenting with cough symptoms and three for sore throat. Key Results Compared to physicians, nurses determined risk and treatment for simulated sore throat cases using clinical prediction rules with nurses having 100% accuracy in low-risk sore throat cases versus 80% for physicians. We found great variability in the accuracy of the risk level and appropriate treatment for cough cases. Nurses reported slight increases in self-efficacy from baseline to post-case evaluation suggesting further information is needed to understand correlation. Conclusions Clinical prediction rules used by nurses in sore throat management workflows can guide accurate diagnosis and treatment in simulated cases, while cough management requires further exploration. Our results support the future implementation of automated prediction rules in a clinical decision support tool and a thorough examination of their effect on clinical practice and patient outcomes.</p>","PeriodicalId":48956,"journal":{"name":"Applied Clinical Informatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nursing Performance Using Clinical Prediction Rules for Acute Respiratory Infection Management: A Case-Based Simulation.\",\"authors\":\"Victoria L Tiase, Patrice Hicks, Haddy Bah, Ainsley Snow, Devin Mann, David A Feldstein, Wendy Halm, Paul D Smith, Rachel Hess\",\"doi\":\"10.1055/a-2700-7036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Background Overuse and misuse of antibiotics is an urgent healthcare problem and one of the key factors in antibiotic resistance. Validated clinical prediction rules have shown effectiveness in guiding providers to an appropriate diagnosis and identifying when antibiotics are the recommended choice for treatment. Objective We aimed to study the relative ability of registered nurses using clinical prediction rules to guide the management of acute respiratory infections in a simulated environment compared to practicing primary care physicians. Design We evaluated a case-based simulation of the diagnosis and treatment for acute respiratory infections using clinical prediction rules. As a secondary outcome, we examined nursing self-efficacy by administering a survey before and after case evaluations. Participants Participants included 40 registered nurses from three academic medical centers and five primary care physicians as comparators. Participants evaluated six simulated case studies, three for patients presenting with cough symptoms and three for sore throat. Key Results Compared to physicians, nurses determined risk and treatment for simulated sore throat cases using clinical prediction rules with nurses having 100% accuracy in low-risk sore throat cases versus 80% for physicians. We found great variability in the accuracy of the risk level and appropriate treatment for cough cases. Nurses reported slight increases in self-efficacy from baseline to post-case evaluation suggesting further information is needed to understand correlation. Conclusions Clinical prediction rules used by nurses in sore throat management workflows can guide accurate diagnosis and treatment in simulated cases, while cough management requires further exploration. Our results support the future implementation of automated prediction rules in a clinical decision support tool and a thorough examination of their effect on clinical practice and patient outcomes.</p>\",\"PeriodicalId\":48956,\"journal\":{\"name\":\"Applied Clinical Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clinical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2700-7036\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clinical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2700-7036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Nursing Performance Using Clinical Prediction Rules for Acute Respiratory Infection Management: A Case-Based Simulation.
Background Overuse and misuse of antibiotics is an urgent healthcare problem and one of the key factors in antibiotic resistance. Validated clinical prediction rules have shown effectiveness in guiding providers to an appropriate diagnosis and identifying when antibiotics are the recommended choice for treatment. Objective We aimed to study the relative ability of registered nurses using clinical prediction rules to guide the management of acute respiratory infections in a simulated environment compared to practicing primary care physicians. Design We evaluated a case-based simulation of the diagnosis and treatment for acute respiratory infections using clinical prediction rules. As a secondary outcome, we examined nursing self-efficacy by administering a survey before and after case evaluations. Participants Participants included 40 registered nurses from three academic medical centers and five primary care physicians as comparators. Participants evaluated six simulated case studies, three for patients presenting with cough symptoms and three for sore throat. Key Results Compared to physicians, nurses determined risk and treatment for simulated sore throat cases using clinical prediction rules with nurses having 100% accuracy in low-risk sore throat cases versus 80% for physicians. We found great variability in the accuracy of the risk level and appropriate treatment for cough cases. Nurses reported slight increases in self-efficacy from baseline to post-case evaluation suggesting further information is needed to understand correlation. Conclusions Clinical prediction rules used by nurses in sore throat management workflows can guide accurate diagnosis and treatment in simulated cases, while cough management requires further exploration. Our results support the future implementation of automated prediction rules in a clinical decision support tool and a thorough examination of their effect on clinical practice and patient outcomes.
期刊介绍:
ACI is the third Schattauer journal dealing with biomedical and health informatics. It perfectly complements our other journals Öffnet internen Link im aktuellen FensterMethods of Information in Medicine and the Öffnet internen Link im aktuellen FensterYearbook of Medical Informatics. The Yearbook of Medical Informatics being the “Milestone” or state-of-the-art journal and Methods of Information in Medicine being the “Science and Research” journal of IMIA, ACI intends to be the “Practical” journal of IMIA.