Jianhui Gao, Benson Chou, Zachary R McCaw, Hilary Thurston, Paul Varghese, Chuan Hong, Jessica Gronsbell
{"title":"什么是公平?定义健康机器学习中的公平性。","authors":"Jianhui Gao, Benson Chou, Zachary R McCaw, Hilary Thurston, Paul Varghese, Chuan Hong, Jessica Gronsbell","doi":"10.1002/sim.70234","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring that machine-learning (ML) models are safe, effective, and equitable across all patients is critical for clinical decision-making and for preventing the amplification of existing health disparities. In this work, we examine how fairness is conceptualized in ML for health, including why ML models may lead to unfair decisions and how fairness has been measured in diverse real-world applications. We review commonly used fairness notions within group, individual, and causal-based frameworks. We also discuss the outlook for future research and highlight opportunities and challenges in operationalizing fairness in health-focused applications.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 20-22","pages":"e70234"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436242/pdf/","citationCount":"0","resultStr":"{\"title\":\"What Is Fair? Defining Fairness in Machine Learning for Health.\",\"authors\":\"Jianhui Gao, Benson Chou, Zachary R McCaw, Hilary Thurston, Paul Varghese, Chuan Hong, Jessica Gronsbell\",\"doi\":\"10.1002/sim.70234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ensuring that machine-learning (ML) models are safe, effective, and equitable across all patients is critical for clinical decision-making and for preventing the amplification of existing health disparities. In this work, we examine how fairness is conceptualized in ML for health, including why ML models may lead to unfair decisions and how fairness has been measured in diverse real-world applications. We review commonly used fairness notions within group, individual, and causal-based frameworks. We also discuss the outlook for future research and highlight opportunities and challenges in operationalizing fairness in health-focused applications.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 20-22\",\"pages\":\"e70234\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.70234\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
What Is Fair? Defining Fairness in Machine Learning for Health.
Ensuring that machine-learning (ML) models are safe, effective, and equitable across all patients is critical for clinical decision-making and for preventing the amplification of existing health disparities. In this work, we examine how fairness is conceptualized in ML for health, including why ML models may lead to unfair decisions and how fairness has been measured in diverse real-world applications. We review commonly used fairness notions within group, individual, and causal-based frameworks. We also discuss the outlook for future research and highlight opportunities and challenges in operationalizing fairness in health-focused applications.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.