Daniel M. Gallagher , Md Zahidul Islam Khan , Steven Patterson , Finbarr P.M. O'Harte , Nigel Irwin
{"title":"新型氨基酸取代和酰化spexin类似物对胰腺β细胞功能、食欲和葡萄糖稳态的影响。","authors":"Daniel M. Gallagher , Md Zahidul Islam Khan , Steven Patterson , Finbarr P.M. O'Harte , Nigel Irwin","doi":"10.1016/j.mce.2025.112657","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The neuropeptide spexin is recognised as a satiety-inducing hormone, but overall effects on metabolism are less characterised. Rapid enzymatic metabolism means elucidating biological effects of spexin is challenging, because the bioactive profile is short.</div></div><div><h3>Methods</h3><div>Therefore, in the present study, an Asp<sup>1</sup> for Asn<sup>1</sup> substituted spexin analogue, D<sup>1</sup>Spx, alongside two related fatty acid derivatised analogues, (γGlu-Pal)-D<sup>1</sup>Spx and (K<sup>11</sup>γGlu-Pal)-D<sup>1</sup>Spx, were synthesised and effects on pancreatic beta-cell secretory function and health investigated together with impact on appetite and glucose homeostasis in mice.</div></div><div><h3>Results</h3><div>Spexin immunoreactivity was initially confirmed in BRIN-BD11 beta-cells. Interestingly, like native spexin, D<sup>1</sup>Spx was liable to plasma enzyme degradation, but the fatty acid derivatised molecules remained intact. None of the peptides augmented insulin secretion from BRIN-BD11 cells. Moreover, the spexin peptides inhibited alanine‐induced insulin secretion, with native spexin having no effect on intracellular calcium. However, all spexin peptides (10<sup>−8</sup> and 10<sup>−6</sup> M) promoted beta-cell proliferation, whilst native spexin and (γGlu-Pal)-D<sup>1</sup>Spx protected against cytokine-induced beta-cell apoptosis. When administered intraperitoneally to mice, spexin peptides lacked effects on appetite regulation, even at elevated doses of 250 nmol/kg. Following conjoint injection with saline, none of the spexin peptides affected blood glucose levels barring a negligible increase by D<sup>1</sup>Spx. When administered together with glucose, (γGlu-Pal)-D<sup>1</sup>Spx slightly increased blood glucose at 30 min post-injection, but there was no overall difference between the spexin peptides when compared to glucose alone.</div></div><div><h3>Conclusions</h3><div>Acylation creates stable spexin analogues with similar bioactivity as native spexin, including promotion of beta-cell proliferation and partial protection against apoptosis.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"609 ","pages":"Article 112657"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of novel amino acid substituted and acylated spexin analogues on pancreatic beta-cell function, appetite and glucose homeostasis\",\"authors\":\"Daniel M. Gallagher , Md Zahidul Islam Khan , Steven Patterson , Finbarr P.M. O'Harte , Nigel Irwin\",\"doi\":\"10.1016/j.mce.2025.112657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>The neuropeptide spexin is recognised as a satiety-inducing hormone, but overall effects on metabolism are less characterised. Rapid enzymatic metabolism means elucidating biological effects of spexin is challenging, because the bioactive profile is short.</div></div><div><h3>Methods</h3><div>Therefore, in the present study, an Asp<sup>1</sup> for Asn<sup>1</sup> substituted spexin analogue, D<sup>1</sup>Spx, alongside two related fatty acid derivatised analogues, (γGlu-Pal)-D<sup>1</sup>Spx and (K<sup>11</sup>γGlu-Pal)-D<sup>1</sup>Spx, were synthesised and effects on pancreatic beta-cell secretory function and health investigated together with impact on appetite and glucose homeostasis in mice.</div></div><div><h3>Results</h3><div>Spexin immunoreactivity was initially confirmed in BRIN-BD11 beta-cells. Interestingly, like native spexin, D<sup>1</sup>Spx was liable to plasma enzyme degradation, but the fatty acid derivatised molecules remained intact. None of the peptides augmented insulin secretion from BRIN-BD11 cells. Moreover, the spexin peptides inhibited alanine‐induced insulin secretion, with native spexin having no effect on intracellular calcium. However, all spexin peptides (10<sup>−8</sup> and 10<sup>−6</sup> M) promoted beta-cell proliferation, whilst native spexin and (γGlu-Pal)-D<sup>1</sup>Spx protected against cytokine-induced beta-cell apoptosis. When administered intraperitoneally to mice, spexin peptides lacked effects on appetite regulation, even at elevated doses of 250 nmol/kg. Following conjoint injection with saline, none of the spexin peptides affected blood glucose levels barring a negligible increase by D<sup>1</sup>Spx. When administered together with glucose, (γGlu-Pal)-D<sup>1</sup>Spx slightly increased blood glucose at 30 min post-injection, but there was no overall difference between the spexin peptides when compared to glucose alone.</div></div><div><h3>Conclusions</h3><div>Acylation creates stable spexin analogues with similar bioactivity as native spexin, including promotion of beta-cell proliferation and partial protection against apoptosis.</div></div>\",\"PeriodicalId\":18707,\"journal\":{\"name\":\"Molecular and Cellular Endocrinology\",\"volume\":\"609 \",\"pages\":\"Article 112657\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303720725002084\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720725002084","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Impact of novel amino acid substituted and acylated spexin analogues on pancreatic beta-cell function, appetite and glucose homeostasis
Objective
The neuropeptide spexin is recognised as a satiety-inducing hormone, but overall effects on metabolism are less characterised. Rapid enzymatic metabolism means elucidating biological effects of spexin is challenging, because the bioactive profile is short.
Methods
Therefore, in the present study, an Asp1 for Asn1 substituted spexin analogue, D1Spx, alongside two related fatty acid derivatised analogues, (γGlu-Pal)-D1Spx and (K11γGlu-Pal)-D1Spx, were synthesised and effects on pancreatic beta-cell secretory function and health investigated together with impact on appetite and glucose homeostasis in mice.
Results
Spexin immunoreactivity was initially confirmed in BRIN-BD11 beta-cells. Interestingly, like native spexin, D1Spx was liable to plasma enzyme degradation, but the fatty acid derivatised molecules remained intact. None of the peptides augmented insulin secretion from BRIN-BD11 cells. Moreover, the spexin peptides inhibited alanine‐induced insulin secretion, with native spexin having no effect on intracellular calcium. However, all spexin peptides (10−8 and 10−6 M) promoted beta-cell proliferation, whilst native spexin and (γGlu-Pal)-D1Spx protected against cytokine-induced beta-cell apoptosis. When administered intraperitoneally to mice, spexin peptides lacked effects on appetite regulation, even at elevated doses of 250 nmol/kg. Following conjoint injection with saline, none of the spexin peptides affected blood glucose levels barring a negligible increase by D1Spx. When administered together with glucose, (γGlu-Pal)-D1Spx slightly increased blood glucose at 30 min post-injection, but there was no overall difference between the spexin peptides when compared to glucose alone.
Conclusions
Acylation creates stable spexin analogues with similar bioactivity as native spexin, including promotion of beta-cell proliferation and partial protection against apoptosis.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.