集体作文人工选择的成功与否取决于初始值和目标值。

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-09-15 DOI:10.7554/eLife.97461
Juhee Lee, Wenying Shou, Hye Jin Park
{"title":"集体作文人工选择的成功与否取决于初始值和目标值。","authors":"Juhee Lee, Wenying Shou, Hye Jin Park","doi":"10.7554/eLife.97461","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial collectives can perform functions beyond the capability of individual members. Enhancing collective functions through artificial selection is, however, challenging. Here, we explore the 'rafting-a-waterfall' metaphor where achieving a target population composition depends on both target and initial compositions. Specifically, collectives comprising fast-growing (F) and slow-growing (S) individuals were grown for 'maturation' time, and the collective with S-frequency closest to the target value is chosen to 'reproduce' via inoculating offspring collectives. During collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Using simulations and analytical calculations, we show that intermediate target S frequencies are the most challenging, akin to a target within the vertical drop of a waterfall, rather than above or below it. This arises because intra-collective selection is the strongest at intermediate S-frequencies, which can overpower inter-collective selection. While achieving a low target S frequencies is consistently feasible, attaining high target S-frequencies requires an initially high S-frequency - much like a raft that can descend but not ascend a waterfall. As Newborn size increases, the region of achievable target frequency is reduced until no frequency is achievable. In contrast, the number of collectives under selection plays a less critical role. In scenarios involving more than two populations, the evolutionary trajectory must navigate entirely away from the metaphorical 'waterfall drop.' Our findings illustrate that the strength of intra-collective evolution is frequency-dependent, with implications in experimental planning.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435894/pdf/","citationCount":"0","resultStr":"{\"title\":\"The success of artificial selection for collective composition hinges on initial and target values.\",\"authors\":\"Juhee Lee, Wenying Shou, Hye Jin Park\",\"doi\":\"10.7554/eLife.97461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial collectives can perform functions beyond the capability of individual members. Enhancing collective functions through artificial selection is, however, challenging. Here, we explore the 'rafting-a-waterfall' metaphor where achieving a target population composition depends on both target and initial compositions. Specifically, collectives comprising fast-growing (F) and slow-growing (S) individuals were grown for 'maturation' time, and the collective with S-frequency closest to the target value is chosen to 'reproduce' via inoculating offspring collectives. During collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Using simulations and analytical calculations, we show that intermediate target S frequencies are the most challenging, akin to a target within the vertical drop of a waterfall, rather than above or below it. This arises because intra-collective selection is the strongest at intermediate S-frequencies, which can overpower inter-collective selection. While achieving a low target S frequencies is consistently feasible, attaining high target S-frequencies requires an initially high S-frequency - much like a raft that can descend but not ascend a waterfall. As Newborn size increases, the region of achievable target frequency is reduced until no frequency is achievable. In contrast, the number of collectives under selection plays a less critical role. In scenarios involving more than two populations, the evolutionary trajectory must navigate entirely away from the metaphorical 'waterfall drop.' Our findings illustrate that the strength of intra-collective evolution is frequency-dependent, with implications in experimental planning.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.97461\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.97461","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物集体可以执行超出个体成员能力的功能。然而,通过人工选择来增强集体功能是具有挑战性的。在这里,我们探索了“漂流瀑布”的比喻,其中实现目标人口组成取决于目标和初始组成。具体而言,由快速生长(F)和慢生长(S)个体组成的集体培养“成熟”时间,并选择S频率最接近目标值的集体通过接种后代集体进行“繁殖”。在集体成熟过程中,集体内的选择就像瀑布一样,无情地将s频率推向更低的值,而在集体繁殖过程中,集体间的选择就像一个努力达到目标频率的椽子。通过模拟和分析计算,我们发现中间目标S频率是最具挑战性的,类似于瀑布垂直落差内的目标,而不是高于或低于它。这是因为群体内的选择在中间s频率是最强的,这可以压倒群体间的选择。虽然实现低目标S频率始终是可行的,但要实现高目标S频率,就需要初始的高S频率——就像木筏在瀑布中只能下降而不能上升一样。随着新生儿尺寸的增大,可达到目标频率的区域逐渐缩小,直至无法达到目标频率。相比之下,选择下的集体数量起的作用就不那么重要了。在涉及两个以上种群的情况下,进化轨迹必须完全偏离比喻中的“瀑布下降”。我们的研究结果表明,集体内进化的强度是频率依赖的,这对实验计划有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The success of artificial selection for collective composition hinges on initial and target values.

Microbial collectives can perform functions beyond the capability of individual members. Enhancing collective functions through artificial selection is, however, challenging. Here, we explore the 'rafting-a-waterfall' metaphor where achieving a target population composition depends on both target and initial compositions. Specifically, collectives comprising fast-growing (F) and slow-growing (S) individuals were grown for 'maturation' time, and the collective with S-frequency closest to the target value is chosen to 'reproduce' via inoculating offspring collectives. During collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Using simulations and analytical calculations, we show that intermediate target S frequencies are the most challenging, akin to a target within the vertical drop of a waterfall, rather than above or below it. This arises because intra-collective selection is the strongest at intermediate S-frequencies, which can overpower inter-collective selection. While achieving a low target S frequencies is consistently feasible, attaining high target S-frequencies requires an initially high S-frequency - much like a raft that can descend but not ascend a waterfall. As Newborn size increases, the region of achievable target frequency is reduced until no frequency is achievable. In contrast, the number of collectives under selection plays a less critical role. In scenarios involving more than two populations, the evolutionary trajectory must navigate entirely away from the metaphorical 'waterfall drop.' Our findings illustrate that the strength of intra-collective evolution is frequency-dependent, with implications in experimental planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信