{"title":"视觉内隐学习中的结构迁移与巩固。","authors":"Dominik Garber, József Fiser","doi":"10.7554/eLife.100785","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer learning, the re-application of previously learned higher-level regularities to novel input, is a key challenge in cognition. While previous empirical studies investigated human transfer learning in supervised or reinforcement learning for explicit knowledge, it is unknown whether such transfer occurs during naturally more common implicit and unsupervised learning and, if so, how it is related to memory consolidation. We compared the transfer of newly acquired explicit and implicit abstract knowledge during unsupervised learning by extending a visual statistical learning paradigm to a transfer learning context. We found transfer during unsupervised learning, but with important differences depending on the explicitness/implicitness of the acquired knowledge. Observers acquiring explicit knowledge during initial learning could transfer the learned structures immediately. In contrast, observers with the same amount but implicit knowledge showed the opposite effect, a structural interference during transfer. However, with sleep between the learning phases, implicit observers, while still remaining implicit, switched their behavior and showed the same pattern of transfer as explicit observers did. This effect was specific to sleep and not found after non-sleep consolidation. Our results highlight similarities and differences between explicit and implicit learning while acquiring generalizable higher-level knowledge and relying on consolidation for restructuring internal representations.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure transfer and consolidation in visual implicit learning.\",\"authors\":\"Dominik Garber, József Fiser\",\"doi\":\"10.7554/eLife.100785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transfer learning, the re-application of previously learned higher-level regularities to novel input, is a key challenge in cognition. While previous empirical studies investigated human transfer learning in supervised or reinforcement learning for explicit knowledge, it is unknown whether such transfer occurs during naturally more common implicit and unsupervised learning and, if so, how it is related to memory consolidation. We compared the transfer of newly acquired explicit and implicit abstract knowledge during unsupervised learning by extending a visual statistical learning paradigm to a transfer learning context. We found transfer during unsupervised learning, but with important differences depending on the explicitness/implicitness of the acquired knowledge. Observers acquiring explicit knowledge during initial learning could transfer the learned structures immediately. In contrast, observers with the same amount but implicit knowledge showed the opposite effect, a structural interference during transfer. However, with sleep between the learning phases, implicit observers, while still remaining implicit, switched their behavior and showed the same pattern of transfer as explicit observers did. This effect was specific to sleep and not found after non-sleep consolidation. Our results highlight similarities and differences between explicit and implicit learning while acquiring generalizable higher-level knowledge and relying on consolidation for restructuring internal representations.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.100785\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.100785","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Structure transfer and consolidation in visual implicit learning.
Transfer learning, the re-application of previously learned higher-level regularities to novel input, is a key challenge in cognition. While previous empirical studies investigated human transfer learning in supervised or reinforcement learning for explicit knowledge, it is unknown whether such transfer occurs during naturally more common implicit and unsupervised learning and, if so, how it is related to memory consolidation. We compared the transfer of newly acquired explicit and implicit abstract knowledge during unsupervised learning by extending a visual statistical learning paradigm to a transfer learning context. We found transfer during unsupervised learning, but with important differences depending on the explicitness/implicitness of the acquired knowledge. Observers acquiring explicit knowledge during initial learning could transfer the learned structures immediately. In contrast, observers with the same amount but implicit knowledge showed the opposite effect, a structural interference during transfer. However, with sleep between the learning phases, implicit observers, while still remaining implicit, switched their behavior and showed the same pattern of transfer as explicit observers did. This effect was specific to sleep and not found after non-sleep consolidation. Our results highlight similarities and differences between explicit and implicit learning while acquiring generalizable higher-level knowledge and relying on consolidation for restructuring internal representations.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.