{"title":"宏观网络系统中交通流的数据驱动建模。","authors":"Toprak Firat, Deniz Eroglu","doi":"10.1063/5.0285930","DOIUrl":null,"url":null,"abstract":"<p><p>Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven modeling of traffic flow in macroscopic network systems.\",\"authors\":\"Toprak Firat, Deniz Eroglu\",\"doi\":\"10.1063/5.0285930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0285930\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0285930","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Data-driven modeling of traffic flow in macroscopic network systems.
Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.