宏观网络系统中交通流的数据驱动建模。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0285930
Toprak Firat, Deniz Eroglu
{"title":"宏观网络系统中交通流的数据驱动建模。","authors":"Toprak Firat, Deniz Eroglu","doi":"10.1063/5.0285930","DOIUrl":null,"url":null,"abstract":"<p><p>Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven modeling of traffic flow in macroscopic network systems.\",\"authors\":\"Toprak Firat, Deniz Eroglu\",\"doi\":\"10.1063/5.0285930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0285930\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0285930","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

城市交通建模对于理解和缓解拥堵至关重要,但现有的方法面临着现实主义和可扩展性之间的权衡。微观的基于代理的模拟器捕捉单个车辆的行为,但计算量大,难以大规模校准。宏观模型虽然更有效,但往往依赖于强大的假设,比如固定的始发目的地流,或者过于简化网络动态。在这项工作中,我们提出了一个数据驱动的宏观模型,将流量模拟为流网络上的离散时间负载交换过程。该模型仅使用道路类型属性、网络结构和观察到的交通密度捕获瓶颈、溢出和自适应负载再分配等关键现象。参数学习是通过进化优化来完成的,允许模型在不假设潜在旅行需求的情况下适应合成和现实条件。我们在合成网格状网络和来自伦敦、伊斯坦布尔和纽约的真实交通数据上评估了该框架。由此产生的框架为城市交通预测提供了可扩展和可解释的替代方案,在不同网络条件下平衡预测准确性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven modeling of traffic flow in macroscopic network systems.

Urban traffic modeling is essential for understanding and mitigating congestion, yet existing approaches face a trade-off between realism and scalability. Microscopic agent-based simulators capture individual vehicle behavior but are computationally intensive and hard to calibrate at scale. Macroscopic models, while more efficient, often rely on strong assumptions, such as fixed origin-destination flows, or oversimplify network dynamics. In this work, we propose a data-driven macroscopic model that simulates traffic as a discrete-time load-exchange process over flow networks. The model captures key phenomena such as bottlenecks, spillbacks, and adaptive load redistribution using only road-type attributes, network structure, and observed traffic density. Parameter learning is performed via evolutionary optimization, allowing the model to adapt to both synthetic and real-world conditions without assuming latent travel demand. We evaluate the framework on synthetic grid-like networks and on real traffic data from London, Istanbul, and New York. The resulting framework provides a scalable and interpretable alternative for urban traffic forecasting, balancing predictive accuracy with computational efficiency across diverse network conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信