{"title":"嗜盐蛋白适应高盐环境的分子基础。","authors":"Gabriel Ortega-Quintanilla, Oscar Millet","doi":"10.1016/j.jmb.2025.169439","DOIUrl":null,"url":null,"abstract":"<p><p>Halophilic organisms have adapted to survive in environments with extremely high salinity, such as saline lakes. To achieve this, they modify their proteome to withstand salt concentrations that inactivate non-adapted mesophilic proteins. The surfaces of halophilic proteins feature a very characteristic amino acid composition, favoring short, polar, and acidic amino acids-such as aspartate, glutamate, and threonine-while disfavoring bulky, hydrophobic amino acids-such as lysine, methionine, and leucine. In this work, we review our understanding of the molecular basis of haloadaptation. We critically examine the role of electrostatic interactions in stabilizing halophilic proteins, while underlining the importance of other contributions from hydrophobic solvation and preferential ion exclusion. Finally, we describe the mechanistic link by which the halophilic amino acid composition optimizes function in hypersaline environments, balancing the trade-off between stability, solubility, and catalytic function.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169439"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Molecular Basis of the Hypersaline Adaptation of Halophilic Proteins.\",\"authors\":\"Gabriel Ortega-Quintanilla, Oscar Millet\",\"doi\":\"10.1016/j.jmb.2025.169439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Halophilic organisms have adapted to survive in environments with extremely high salinity, such as saline lakes. To achieve this, they modify their proteome to withstand salt concentrations that inactivate non-adapted mesophilic proteins. The surfaces of halophilic proteins feature a very characteristic amino acid composition, favoring short, polar, and acidic amino acids-such as aspartate, glutamate, and threonine-while disfavoring bulky, hydrophobic amino acids-such as lysine, methionine, and leucine. In this work, we review our understanding of the molecular basis of haloadaptation. We critically examine the role of electrostatic interactions in stabilizing halophilic proteins, while underlining the importance of other contributions from hydrophobic solvation and preferential ion exclusion. Finally, we describe the mechanistic link by which the halophilic amino acid composition optimizes function in hypersaline environments, balancing the trade-off between stability, solubility, and catalytic function.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"169439\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2025.169439\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169439","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
On the Molecular Basis of the Hypersaline Adaptation of Halophilic Proteins.
Halophilic organisms have adapted to survive in environments with extremely high salinity, such as saline lakes. To achieve this, they modify their proteome to withstand salt concentrations that inactivate non-adapted mesophilic proteins. The surfaces of halophilic proteins feature a very characteristic amino acid composition, favoring short, polar, and acidic amino acids-such as aspartate, glutamate, and threonine-while disfavoring bulky, hydrophobic amino acids-such as lysine, methionine, and leucine. In this work, we review our understanding of the molecular basis of haloadaptation. We critically examine the role of electrostatic interactions in stabilizing halophilic proteins, while underlining the importance of other contributions from hydrophobic solvation and preferential ion exclusion. Finally, we describe the mechanistic link by which the halophilic amino acid composition optimizes function in hypersaline environments, balancing the trade-off between stability, solubility, and catalytic function.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.