Tyler G. Ekins, Chloe Rybicki-Kler, Tao Deng, Isla A. W. Brooks, Izabela Jedrasiak-Cape, Ethan Donoho, Omar J. Ahmed
{"title":"缺乏5-HT2A受体的皮质神经元的迷幻神经可塑性","authors":"Tyler G. Ekins, Chloe Rybicki-Kler, Tao Deng, Isla A. W. Brooks, Izabela Jedrasiak-Cape, Ethan Donoho, Omar J. Ahmed","doi":"10.1038/s41380-025-03257-w","DOIUrl":null,"url":null,"abstract":"<p>Classical psychedelic drugs show promise as a treatment for major depressive disorder and related psychiatric disorders. This therapeutic efficacy stems from long-lasting psychedelic-induced neuroplasticity onto prefrontal cortical neurons and is thought to require the postsynaptic expression of serotonin 2A receptors (5-HT<sub>2A</sub>R). However, other cortical regions such as the granular retrosplenial cortex (RSG) – important for memory, spatial orientation, fear extinction, and imagining oneself in the future, but impaired in Alzheimer’s disease – lack 5-HT<sub>2A</sub>R and are thus considered unlikely to benefit from psychedelic therapy. Here, we show that RSG pyramidal cells lacking postsynaptic 5-HT<sub>2A</sub> receptors still undergo long-lasting psychedelic-induced synaptic enhancement. A newly engineered CRISPR-Cas-based conditional knockout mouse line reveals that this form of psychedelic-induced retrosplenial plasticity requires presynaptic 5-HT<sub>2A</sub> receptors expressed on anterior thalamic axonal inputs to RSG. These results highlight a broader psychedelic therapeutic utility than currently appreciated, suggesting potential for augmenting RSG circuit function in Alzheimer’s disease, post-traumatic stress disorder, and other neuropsychiatric conditions, despite the lack of postsynaptic 5-HT<sub>2A</sub> receptors.</p><figure></figure>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Psychedelic neuroplasticity of cortical neurons lacking 5-HT2A receptors\",\"authors\":\"Tyler G. Ekins, Chloe Rybicki-Kler, Tao Deng, Isla A. W. Brooks, Izabela Jedrasiak-Cape, Ethan Donoho, Omar J. Ahmed\",\"doi\":\"10.1038/s41380-025-03257-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Classical psychedelic drugs show promise as a treatment for major depressive disorder and related psychiatric disorders. This therapeutic efficacy stems from long-lasting psychedelic-induced neuroplasticity onto prefrontal cortical neurons and is thought to require the postsynaptic expression of serotonin 2A receptors (5-HT<sub>2A</sub>R). However, other cortical regions such as the granular retrosplenial cortex (RSG) – important for memory, spatial orientation, fear extinction, and imagining oneself in the future, but impaired in Alzheimer’s disease – lack 5-HT<sub>2A</sub>R and are thus considered unlikely to benefit from psychedelic therapy. Here, we show that RSG pyramidal cells lacking postsynaptic 5-HT<sub>2A</sub> receptors still undergo long-lasting psychedelic-induced synaptic enhancement. A newly engineered CRISPR-Cas-based conditional knockout mouse line reveals that this form of psychedelic-induced retrosplenial plasticity requires presynaptic 5-HT<sub>2A</sub> receptors expressed on anterior thalamic axonal inputs to RSG. These results highlight a broader psychedelic therapeutic utility than currently appreciated, suggesting potential for augmenting RSG circuit function in Alzheimer’s disease, post-traumatic stress disorder, and other neuropsychiatric conditions, despite the lack of postsynaptic 5-HT<sub>2A</sub> receptors.</p><figure></figure>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-025-03257-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03257-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Psychedelic neuroplasticity of cortical neurons lacking 5-HT2A receptors
Classical psychedelic drugs show promise as a treatment for major depressive disorder and related psychiatric disorders. This therapeutic efficacy stems from long-lasting psychedelic-induced neuroplasticity onto prefrontal cortical neurons and is thought to require the postsynaptic expression of serotonin 2A receptors (5-HT2AR). However, other cortical regions such as the granular retrosplenial cortex (RSG) – important for memory, spatial orientation, fear extinction, and imagining oneself in the future, but impaired in Alzheimer’s disease – lack 5-HT2AR and are thus considered unlikely to benefit from psychedelic therapy. Here, we show that RSG pyramidal cells lacking postsynaptic 5-HT2A receptors still undergo long-lasting psychedelic-induced synaptic enhancement. A newly engineered CRISPR-Cas-based conditional knockout mouse line reveals that this form of psychedelic-induced retrosplenial plasticity requires presynaptic 5-HT2A receptors expressed on anterior thalamic axonal inputs to RSG. These results highlight a broader psychedelic therapeutic utility than currently appreciated, suggesting potential for augmenting RSG circuit function in Alzheimer’s disease, post-traumatic stress disorder, and other neuropsychiatric conditions, despite the lack of postsynaptic 5-HT2A receptors.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.