洛施密特回声,出现对偶性和广义时间熵在淬灭到临界点后的标度

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-09-16 DOI:10.22331/q-2025-09-16-1859
Stefano Carignano, Luca Tagliacozzo
{"title":"洛施密特回声,出现对偶性和广义时间熵在淬灭到临界点后的标度","authors":"Stefano Carignano, Luca Tagliacozzo","doi":"10.22331/q-2025-09-16-1859","DOIUrl":null,"url":null,"abstract":"We show how the Loschmidt echo of a product state after a quench to a conformal invariant critical point and its leading finite time corrections can be predicted by using conformal field theories (CFT). We check such predictions with tensor networks, finding excellent agreement. As a result, we can use the Loschmidt echo to extract the universal information of the underlying CFT including the central charge, the operator content, and its generalized temporal entropies. We are also able to predict and confirm an emerging dual-unitarity of the evolution at late times, since the spatial transfer matrix operator that evolves the system in space becomes unitary in such limit. Our results on the growth of temporal entropies also imply that, using state-of-the art tensor networks algorithms, such calculations only require resources that increase polynomially with the duration of the quench, thus providing an example of numerically efficiently solvable out-of-equilibrium scenario.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loschmidt echo, emerging dual unitarity and scaling of generalized temporal entropies after quenches to the critical point\",\"authors\":\"Stefano Carignano, Luca Tagliacozzo\",\"doi\":\"10.22331/q-2025-09-16-1859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how the Loschmidt echo of a product state after a quench to a conformal invariant critical point and its leading finite time corrections can be predicted by using conformal field theories (CFT). We check such predictions with tensor networks, finding excellent agreement. As a result, we can use the Loschmidt echo to extract the universal information of the underlying CFT including the central charge, the operator content, and its generalized temporal entropies. We are also able to predict and confirm an emerging dual-unitarity of the evolution at late times, since the spatial transfer matrix operator that evolves the system in space becomes unitary in such limit. Our results on the growth of temporal entropies also imply that, using state-of-the art tensor networks algorithms, such calculations only require resources that increase polynomially with the duration of the quench, thus providing an example of numerically efficiently solvable out-of-equilibrium scenario.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-09-16-1859\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-09-16-1859","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了如何用共形场论(CFT)来预测产品态在淬火后到共形不变临界点的洛施密特回波及其领先的有限时间修正。我们用张量网络检查了这样的预测,发现了非常好的一致性。因此,我们可以使用洛施密特回波提取底层CFT的通用信息,包括中心电荷、算子内容及其广义时间熵。我们还能够预测和确认在后期出现的演化的双酉性,因为使系统在空间上演化的空间传递矩阵算子在这种极限下成为酉的。我们关于时间熵增长的结果也意味着,使用最先进的张量网络算法,这样的计算只需要随着淬火时间的持续时间多项式地增加资源,从而提供了一个数值上有效可解的非平衡场景的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loschmidt echo, emerging dual unitarity and scaling of generalized temporal entropies after quenches to the critical point
We show how the Loschmidt echo of a product state after a quench to a conformal invariant critical point and its leading finite time corrections can be predicted by using conformal field theories (CFT). We check such predictions with tensor networks, finding excellent agreement. As a result, we can use the Loschmidt echo to extract the universal information of the underlying CFT including the central charge, the operator content, and its generalized temporal entropies. We are also able to predict and confirm an emerging dual-unitarity of the evolution at late times, since the spatial transfer matrix operator that evolves the system in space becomes unitary in such limit. Our results on the growth of temporal entropies also imply that, using state-of-the art tensor networks algorithms, such calculations only require resources that increase polynomially with the duration of the quench, thus providing an example of numerically efficiently solvable out-of-equilibrium scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信