磁星爆发模型与冷却模拟

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
D. De Grandis, N. Rea, K. Kovlakas, F. Coti Zelati, D. Viganò, S. Ascenzi, J. A. Pons, R. Turolla, S. Zane
{"title":"磁星爆发模型与冷却模拟","authors":"D. De Grandis, N. Rea, K. Kovlakas, F. Coti Zelati, D. Viganò, S. Ascenzi, J. A. Pons, R. Turolla, S. Zane","doi":"10.1051/0004-6361/202554666","DOIUrl":null,"url":null,"abstract":"Magnetar outbursts are among the most noteworthy manifestations of magnetism in neutron stars. They are episodes in which the X-ray luminosity of a strongly magnetised neutron star swiftly rises by several orders of magnitude to then decay over the course of several months. In this work, we present simulations of outbursts as a consequence of localised heat deposition in a magnetised neutron star crust, and the subsequent surface cooling. In particular, we employed a magnetothermal evolution code adapted to the study of short-term phenomena; that is, one including in its integration domain the outer layers of the star, where heat diffusion is faster. This choice entailed the development and use of heat blanketing envelope models that are thinner than those found in the literature as the surface boundary condition. We find that such envelopes can support a higher surface temperature than the thicker ones (albeit for less time), which can account for the typical luminosities observed in outbursts even when coming from small hotspots (few km in radius). We study several parameters related to the energetics and geometry of the heating region, concluding that the cooling of a crustal hotspot found in the outer part of the crust can account for the luminosity evolution observed in outbursts both in terms of peak luminosity and timescales. Finally, we discuss the key observables that must be studied in future observations to better constrain the nature of the underlying mechanism.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"36 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetar outburst models with cooling simulations\",\"authors\":\"D. De Grandis, N. Rea, K. Kovlakas, F. Coti Zelati, D. Viganò, S. Ascenzi, J. A. Pons, R. Turolla, S. Zane\",\"doi\":\"10.1051/0004-6361/202554666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetar outbursts are among the most noteworthy manifestations of magnetism in neutron stars. They are episodes in which the X-ray luminosity of a strongly magnetised neutron star swiftly rises by several orders of magnitude to then decay over the course of several months. In this work, we present simulations of outbursts as a consequence of localised heat deposition in a magnetised neutron star crust, and the subsequent surface cooling. In particular, we employed a magnetothermal evolution code adapted to the study of short-term phenomena; that is, one including in its integration domain the outer layers of the star, where heat diffusion is faster. This choice entailed the development and use of heat blanketing envelope models that are thinner than those found in the literature as the surface boundary condition. We find that such envelopes can support a higher surface temperature than the thicker ones (albeit for less time), which can account for the typical luminosities observed in outbursts even when coming from small hotspots (few km in radius). We study several parameters related to the energetics and geometry of the heating region, concluding that the cooling of a crustal hotspot found in the outer part of the crust can account for the luminosity evolution observed in outbursts both in terms of peak luminosity and timescales. Finally, we discuss the key observables that must be studied in future observations to better constrain the nature of the underlying mechanism.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202554666\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554666","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

磁星爆发是中子星中最值得注意的磁性表现之一。它们是一颗强磁化中子星的x射线亮度迅速上升几个数量级,然后在几个月的时间里衰减的插曲。在这项工作中,我们提出了在磁化中子星外壳中局部热沉积和随后的表面冷却的结果的爆发模拟。特别地,我们采用了适合研究短期现象的磁热演化代码;也就是说,它的积分域包括恒星的外层,在那里热扩散更快。这种选择需要开发和使用比文献中发现的更薄的热覆盖包络模型作为表面边界条件。我们发现这样的包层可以比厚的包层支持更高的表面温度(尽管持续的时间更短),这可以解释即使来自小热点(半径几公里)也能在爆发中观察到典型的亮度。我们研究了与加热区域的能量学和几何结构有关的几个参数,得出结论认为,在地壳外部发现的地壳热点的冷却可以从峰值光度和时间尺度上解释在爆发中观测到的光度演变。最后,我们讨论了在未来观测中必须研究的关键观测值,以更好地约束潜在机制的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetar outburst models with cooling simulations
Magnetar outbursts are among the most noteworthy manifestations of magnetism in neutron stars. They are episodes in which the X-ray luminosity of a strongly magnetised neutron star swiftly rises by several orders of magnitude to then decay over the course of several months. In this work, we present simulations of outbursts as a consequence of localised heat deposition in a magnetised neutron star crust, and the subsequent surface cooling. In particular, we employed a magnetothermal evolution code adapted to the study of short-term phenomena; that is, one including in its integration domain the outer layers of the star, where heat diffusion is faster. This choice entailed the development and use of heat blanketing envelope models that are thinner than those found in the literature as the surface boundary condition. We find that such envelopes can support a higher surface temperature than the thicker ones (albeit for less time), which can account for the typical luminosities observed in outbursts even when coming from small hotspots (few km in radius). We study several parameters related to the energetics and geometry of the heating region, concluding that the cooling of a crustal hotspot found in the outer part of the crust can account for the luminosity evolution observed in outbursts both in terms of peak luminosity and timescales. Finally, we discuss the key observables that must be studied in future observations to better constrain the nature of the underlying mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信