D. De Grandis, N. Rea, K. Kovlakas, F. Coti Zelati, D. Viganò, S. Ascenzi, J. A. Pons, R. Turolla, S. Zane
{"title":"磁星爆发模型与冷却模拟","authors":"D. De Grandis, N. Rea, K. Kovlakas, F. Coti Zelati, D. Viganò, S. Ascenzi, J. A. Pons, R. Turolla, S. Zane","doi":"10.1051/0004-6361/202554666","DOIUrl":null,"url":null,"abstract":"Magnetar outbursts are among the most noteworthy manifestations of magnetism in neutron stars. They are episodes in which the X-ray luminosity of a strongly magnetised neutron star swiftly rises by several orders of magnitude to then decay over the course of several months. In this work, we present simulations of outbursts as a consequence of localised heat deposition in a magnetised neutron star crust, and the subsequent surface cooling. In particular, we employed a magnetothermal evolution code adapted to the study of short-term phenomena; that is, one including in its integration domain the outer layers of the star, where heat diffusion is faster. This choice entailed the development and use of heat blanketing envelope models that are thinner than those found in the literature as the surface boundary condition. We find that such envelopes can support a higher surface temperature than the thicker ones (albeit for less time), which can account for the typical luminosities observed in outbursts even when coming from small hotspots (few km in radius). We study several parameters related to the energetics and geometry of the heating region, concluding that the cooling of a crustal hotspot found in the outer part of the crust can account for the luminosity evolution observed in outbursts both in terms of peak luminosity and timescales. Finally, we discuss the key observables that must be studied in future observations to better constrain the nature of the underlying mechanism.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"36 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetar outburst models with cooling simulations\",\"authors\":\"D. De Grandis, N. Rea, K. Kovlakas, F. Coti Zelati, D. Viganò, S. Ascenzi, J. A. Pons, R. Turolla, S. Zane\",\"doi\":\"10.1051/0004-6361/202554666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetar outbursts are among the most noteworthy manifestations of magnetism in neutron stars. They are episodes in which the X-ray luminosity of a strongly magnetised neutron star swiftly rises by several orders of magnitude to then decay over the course of several months. In this work, we present simulations of outbursts as a consequence of localised heat deposition in a magnetised neutron star crust, and the subsequent surface cooling. In particular, we employed a magnetothermal evolution code adapted to the study of short-term phenomena; that is, one including in its integration domain the outer layers of the star, where heat diffusion is faster. This choice entailed the development and use of heat blanketing envelope models that are thinner than those found in the literature as the surface boundary condition. We find that such envelopes can support a higher surface temperature than the thicker ones (albeit for less time), which can account for the typical luminosities observed in outbursts even when coming from small hotspots (few km in radius). We study several parameters related to the energetics and geometry of the heating region, concluding that the cooling of a crustal hotspot found in the outer part of the crust can account for the luminosity evolution observed in outbursts both in terms of peak luminosity and timescales. Finally, we discuss the key observables that must be studied in future observations to better constrain the nature of the underlying mechanism.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202554666\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202554666","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Magnetar outbursts are among the most noteworthy manifestations of magnetism in neutron stars. They are episodes in which the X-ray luminosity of a strongly magnetised neutron star swiftly rises by several orders of magnitude to then decay over the course of several months. In this work, we present simulations of outbursts as a consequence of localised heat deposition in a magnetised neutron star crust, and the subsequent surface cooling. In particular, we employed a magnetothermal evolution code adapted to the study of short-term phenomena; that is, one including in its integration domain the outer layers of the star, where heat diffusion is faster. This choice entailed the development and use of heat blanketing envelope models that are thinner than those found in the literature as the surface boundary condition. We find that such envelopes can support a higher surface temperature than the thicker ones (albeit for less time), which can account for the typical luminosities observed in outbursts even when coming from small hotspots (few km in radius). We study several parameters related to the energetics and geometry of the heating region, concluding that the cooling of a crustal hotspot found in the outer part of the crust can account for the luminosity evolution observed in outbursts both in terms of peak luminosity and timescales. Finally, we discuss the key observables that must be studied in future observations to better constrain the nature of the underlying mechanism.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.