基于copula的数据驱动机会约束混合整数非线性双级优化:在综合计划和调度问题中的应用。

Systems & control transactions Pub Date : 2025-01-01 Epub Date: 2025-06-27 DOI:10.69997/sct.169891
Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos
{"title":"基于copula的数据驱动机会约束混合整数非线性双级优化:在综合计划和调度问题中的应用。","authors":"Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos","doi":"10.69997/sct.169891","DOIUrl":null,"url":null,"abstract":"<p><p>Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"4 ","pages":"117-122"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.\",\"authors\":\"Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos\",\"doi\":\"10.69997/sct.169891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.</p>\",\"PeriodicalId\":520222,\"journal\":{\"name\":\"Systems & control transactions\",\"volume\":\"4 \",\"pages\":\"117-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & control transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.69997/sct.169891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & control transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.69997/sct.169891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计划和调度是过程供应链的组成部分。数据相关性的存在,特别是多变量需求数据依赖性,可能对决策过程构成重大挑战。这需要考虑底层数据中固有的依赖结构,以生成高质量的、可行的解决方案来优化问题,如计划和调度。这项工作提出了一个机会约束优化框架与copulas集成,copulas是一种非参数数据估计技术,用于根据规划和调度问题中指定的风险阈值预测不确定的需求水平。我们关注的是综合规划和调度问题,遵循双层优化公式。估计的需求预测随后在双级混合整数非线性问题(DOMINO)框架的数据驱动优化中使用,以解决集成优化问题,并得出具有保证需求满意度的决策。计算实验表明,本文提出的基于copula的机会约束优化框架能够有效地结合需求相关性,实现更高的联合需求满意率、更低的总成本和更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.

Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.

Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.

Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.

Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信