符号回归学习可解释PDE解的适应度标准选择。

Systems & control transactions Pub Date : 2025-07-01 Epub Date: 2025-06-27 DOI:10.69997/sct.199083
Benjamin G Cohen, Burcu Beykal, George M Bollas
{"title":"符号回归学习可解释PDE解的适应度标准选择。","authors":"Benjamin G Cohen, Burcu Beykal, George M Bollas","doi":"10.69997/sct.199083","DOIUrl":null,"url":null,"abstract":"<p><p>Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"4 ","pages":"1837-1842"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.\",\"authors\":\"Benjamin G Cohen, Burcu Beykal, George M Bollas\",\"doi\":\"10.69997/sct.199083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.</p>\",\"PeriodicalId\":520222,\"journal\":{\"name\":\"Systems & control transactions\",\"volume\":\"4 \",\"pages\":\"1837-1842\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & control transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.69997/sct.199083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & control transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.69997/sct.199083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物理信息符号回归(PISR)为发现偏微分方程(PDEs)的人类可解释解提供了一条途径。这项工作研究了PISR框架中的三个适应度指标:PDE适应度,贝叶斯信息标准(BIC),以及与给定数据的模型概率成比例的适应度指标。通过拉普拉斯方程、Burgers方程和非线性波动方程的实验,我们证明了结合BIC等信息理论标准可以在保持可解释性的同时产生更高保真度的模型。研究结果表明,基于bic的PISR算法获得了最佳的性能,能够识别出拉普拉斯方程的精确解,并能求出Burgers方程和非线性波动方程的r2值分别为0.998和0.957的解。在估计模型概率时加入贝叶斯d -最优准则强烈约束了求解复杂度,将模型限制在3-4个参数范围内,降低了精度。这些发现表明,两阶段方法——在初始解决方案发现期间使用更简单的复杂性度量,然后进行事后可识别性分析——可能是发现可解释和数学上可识别的PDE解决方案的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.

Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.

Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.

Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.

Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with R 2 -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信