原子建模机器学习时代的不确定性。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Federico Grasselli, Sanggyu Chong, Venkat Kapil, Silvia Bonfanti and Kevin Rossi
{"title":"原子建模机器学习时代的不确定性。","authors":"Federico Grasselli, Sanggyu Chong, Venkat Kapil, Silvia Bonfanti and Kevin Rossi","doi":"10.1039/D5DD00102A","DOIUrl":null,"url":null,"abstract":"<p >The widespread adoption of machine learning surrogate models has significantly improved the scale and complexity of systems and processes that can be explored accurately and efficiently using atomistic modeling. However, the inherently data-driven nature of machine learning models introduces uncertainties that must be quantified, understood, and effectively managed to ensure reliable predictions and conclusions. Building upon these premises, in this perspective, we first overview state-of-the-art uncertainty estimation methods, from Bayesian frameworks to ensembling techniques, and discuss their application in atomistic modeling. We then examine the interplay between model accuracy, uncertainty, training dataset composition, data acquisition strategies, model transferability, and robustness. In doing so, we synthesize insights from the existing literature and highlight areas of ongoing debate.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2654-2675"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423928/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncertainty in the era of machine learning for atomistic modeling\",\"authors\":\"Federico Grasselli, Sanggyu Chong, Venkat Kapil, Silvia Bonfanti and Kevin Rossi\",\"doi\":\"10.1039/D5DD00102A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The widespread adoption of machine learning surrogate models has significantly improved the scale and complexity of systems and processes that can be explored accurately and efficiently using atomistic modeling. However, the inherently data-driven nature of machine learning models introduces uncertainties that must be quantified, understood, and effectively managed to ensure reliable predictions and conclusions. Building upon these premises, in this perspective, we first overview state-of-the-art uncertainty estimation methods, from Bayesian frameworks to ensembling techniques, and discuss their application in atomistic modeling. We then examine the interplay between model accuracy, uncertainty, training dataset composition, data acquisition strategies, model transferability, and robustness. In doing so, we synthesize insights from the existing literature and highlight areas of ongoing debate.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 2654-2675\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00102a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00102a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习代理模型的广泛采用大大提高了系统和过程的规模和复杂性,可以使用原子建模准确有效地进行探索。然而,机器学习模型固有的数据驱动特性引入了不确定性,这些不确定性必须被量化、理解和有效管理,以确保可靠的预测和结论。在这些前提的基础上,从这个角度来看,我们首先概述了最先进的不确定性估计方法,从贝叶斯框架到集成技术,并讨论了它们在原子建模中的应用。然后,我们研究了模型精度、不确定性、训练数据集组成、数据采集策略、模型可转移性和鲁棒性之间的相互作用。在此过程中,我们综合了现有文献的见解,并突出了正在进行辩论的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncertainty in the era of machine learning for atomistic modeling

Uncertainty in the era of machine learning for atomistic modeling

The widespread adoption of machine learning surrogate models has significantly improved the scale and complexity of systems and processes that can be explored accurately and efficiently using atomistic modeling. However, the inherently data-driven nature of machine learning models introduces uncertainties that must be quantified, understood, and effectively managed to ensure reliable predictions and conclusions. Building upon these premises, in this perspective, we first overview state-of-the-art uncertainty estimation methods, from Bayesian frameworks to ensembling techniques, and discuss their application in atomistic modeling. We then examine the interplay between model accuracy, uncertainty, training dataset composition, data acquisition strategies, model transferability, and robustness. In doing so, we synthesize insights from the existing literature and highlight areas of ongoing debate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信