识别认知标记的部分可观察预测模型。

Computational brain & behavior Pub Date : 2025-01-01 Epub Date: 2025-03-24 DOI:10.1007/s42113-025-00238-8
Zita Oravecz, Martin Sliwinski, Sharon H Kim, Lindy Williams, Mindy J Katz, Joachim Vandekerckhove
{"title":"识别认知标记的部分可观察预测模型。","authors":"Zita Oravecz, Martin Sliwinski, Sharon H Kim, Lindy Williams, Mindy J Katz, Joachim Vandekerckhove","doi":"10.1007/s42113-025-00238-8","DOIUrl":null,"url":null,"abstract":"<p><p>Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational cognitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively meaningful cognitive markers and link them to other person-level variables. Most studies stop at this point and do not test whether these cognitive markers have utility for predicting some meaningful outcomes. Here, we demonstrate a <i>partially observable predictor</i> modeling approach that can fill this gap. Using this approach, we can simultaneously extract cognitive markers from repeated assessment data and use these together with demographic covariates for predictive modeling of a clinically interesting outcome in a Bayesian multilevel modeling framework. We describe this approach by constructing a predictive process model in which features of learning are combined with demographic variables to predict mild cognitive impairment and demonstrate it using data from the Einstein Aging Study.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"8 3","pages":"410-420"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423142/pdf/","citationCount":"0","resultStr":"{\"title\":\"Partially Observable Predictor Models for Identifying Cognitive Markers.\",\"authors\":\"Zita Oravecz, Martin Sliwinski, Sharon H Kim, Lindy Williams, Mindy J Katz, Joachim Vandekerckhove\",\"doi\":\"10.1007/s42113-025-00238-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational cognitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively meaningful cognitive markers and link them to other person-level variables. Most studies stop at this point and do not test whether these cognitive markers have utility for predicting some meaningful outcomes. Here, we demonstrate a <i>partially observable predictor</i> modeling approach that can fill this gap. Using this approach, we can simultaneously extract cognitive markers from repeated assessment data and use these together with demographic covariates for predictive modeling of a clinically interesting outcome in a Bayesian multilevel modeling framework. We describe this approach by constructing a predictive process model in which features of learning are combined with demographic variables to predict mild cognitive impairment and demonstrate it using data from the Einstein Aging Study.</p>\",\"PeriodicalId\":72660,\"journal\":{\"name\":\"Computational brain & behavior\",\"volume\":\"8 3\",\"pages\":\"410-420\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423142/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational brain & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42113-025-00238-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-025-00238-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对认知表现的反复评估产生了丰富的数据,从中我们可以提取认知表现的标记。计算认知过程模型通常适合于重复的认知评估,以实质性有意义的认知标记来量化个体差异,并将其与其他个人层面的变量联系起来。大多数研究在这一点上停止,并没有测试这些认知标记是否在预测一些有意义的结果方面具有效用。在这里,我们展示了一种部分可观察的预测器建模方法,可以填补这一空白。使用这种方法,我们可以同时从重复评估数据中提取认知标记,并在贝叶斯多层建模框架中将这些标记与人口统计学协变量一起用于临床有趣结果的预测建模。我们通过构建一个预测过程模型来描述这种方法,该模型将学习特征与人口统计学变量相结合,以预测轻度认知障碍,并使用爱因斯坦老龄化研究的数据来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partially Observable Predictor Models for Identifying Cognitive Markers.

Partially Observable Predictor Models for Identifying Cognitive Markers.

Partially Observable Predictor Models for Identifying Cognitive Markers.

Partially Observable Predictor Models for Identifying Cognitive Markers.

Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational cognitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively meaningful cognitive markers and link them to other person-level variables. Most studies stop at this point and do not test whether these cognitive markers have utility for predicting some meaningful outcomes. Here, we demonstrate a partially observable predictor modeling approach that can fill this gap. Using this approach, we can simultaneously extract cognitive markers from repeated assessment data and use these together with demographic covariates for predictive modeling of a clinically interesting outcome in a Bayesian multilevel modeling framework. We describe this approach by constructing a predictive process model in which features of learning are combined with demographic variables to predict mild cognitive impairment and demonstrate it using data from the Einstein Aging Study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信