通过数据分析和工作流管理的统一数字平台推进大分子发现。

IF 7.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2025-12-01 Epub Date: 2025-09-14 DOI:10.1080/19420862.2025.2555346
Eriberto Natali, Jana Hersch, Christoph Freiberg, Stephan Steigele
{"title":"通过数据分析和工作流管理的统一数字平台推进大分子发现。","authors":"Eriberto Natali, Jana Hersch, Christoph Freiberg, Stephan Steigele","doi":"10.1080/19420862.2025.2555346","DOIUrl":null,"url":null,"abstract":"<p><p>The repertoire of large-molecule treatments continues to expand, resulting in diverse discovery and development workflows. This diversity yields a proliferation of software solutions and procedures for molecule registration, material tracking, experiment planning, data analytics, quality control, data sharing, and decision-making. Contrasting with this manual, labor intensive, and error-prone approach, we introduce the concept of a transformative solution: an integrated platform that translates this complexity into a harmonized, open architecture encompassing all workflows and hardware systems, covering the discovery process up to developability assessment. The benefits and complexities of such a platform are evident in examples spanning different use cases and maturity levels, such as developing multi-specific antibodies and antibody-drug conjugates using shared workflows or incorporating artificial intelligence for predictive and generative tasks. This review outlines state-of-the-art concepts behind a digital platform for automating and streamlining the discovery of new large-molecule treatments.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2555346"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439557/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing large-molecule discovery with a unified digital platform for data analysis and workflow management.\",\"authors\":\"Eriberto Natali, Jana Hersch, Christoph Freiberg, Stephan Steigele\",\"doi\":\"10.1080/19420862.2025.2555346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The repertoire of large-molecule treatments continues to expand, resulting in diverse discovery and development workflows. This diversity yields a proliferation of software solutions and procedures for molecule registration, material tracking, experiment planning, data analytics, quality control, data sharing, and decision-making. Contrasting with this manual, labor intensive, and error-prone approach, we introduce the concept of a transformative solution: an integrated platform that translates this complexity into a harmonized, open architecture encompassing all workflows and hardware systems, covering the discovery process up to developability assessment. The benefits and complexities of such a platform are evident in examples spanning different use cases and maturity levels, such as developing multi-specific antibodies and antibody-drug conjugates using shared workflows or incorporating artificial intelligence for predictive and generative tasks. This review outlines state-of-the-art concepts behind a digital platform for automating and streamlining the discovery of new large-molecule treatments.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2555346\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439557/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2555346\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2555346","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

大分子疗法的应用范围不断扩大,导致发现和开发工作流程的多样化。这种多样性产生了大量的软件解决方案和程序,用于分子注册、材料跟踪、实验计划、数据分析、质量控制、数据共享和决策。与这种手工的、劳动密集型的、容易出错的方法相比,我们引入了一个转换解决方案的概念:一个集成的平台,它将这种复杂性转化为一个协调的、开放的体系结构,它包含了所有的工作流和硬件系统,涵盖了从发现过程到可开发性评估。在跨越不同用例和成熟度级别的示例中,这种平台的好处和复杂性是显而易见的,例如使用共享工作流开发多特异性抗体和抗体-药物缀合物,或者将人工智能用于预测和生成任务。这篇综述概述了自动化和简化新大分子治疗发现的数字平台背后最先进的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing large-molecule discovery with a unified digital platform for data analysis and workflow management.

Advancing large-molecule discovery with a unified digital platform for data analysis and workflow management.

Advancing large-molecule discovery with a unified digital platform for data analysis and workflow management.

Advancing large-molecule discovery with a unified digital platform for data analysis and workflow management.

The repertoire of large-molecule treatments continues to expand, resulting in diverse discovery and development workflows. This diversity yields a proliferation of software solutions and procedures for molecule registration, material tracking, experiment planning, data analytics, quality control, data sharing, and decision-making. Contrasting with this manual, labor intensive, and error-prone approach, we introduce the concept of a transformative solution: an integrated platform that translates this complexity into a harmonized, open architecture encompassing all workflows and hardware systems, covering the discovery process up to developability assessment. The benefits and complexities of such a platform are evident in examples spanning different use cases and maturity levels, such as developing multi-specific antibodies and antibody-drug conjugates using shared workflows or incorporating artificial intelligence for predictive and generative tasks. This review outlines state-of-the-art concepts behind a digital platform for automating and streamlining the discovery of new large-molecule treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信