Ricardo J Mack, Natasha M Flores, Geoffrey C Fox, Hanyang Dong, Metehan Cebeci, Simone Hausmann, Tourkian Chasan, Jill M Dowen, Brian D Strahl, Pawel K Mazur, Or Gozani
{"title":"在krasg12c驱动的肺癌模型中,SETD2抑制肿瘤发生,其催化活性受组蛋白乙酰化调节。","authors":"Ricardo J Mack, Natasha M Flores, Geoffrey C Fox, Hanyang Dong, Metehan Cebeci, Simone Hausmann, Tourkian Chasan, Jill M Dowen, Brian D Strahl, Pawel K Mazur, Or Gozani","doi":"10.7554/eLife.107451","DOIUrl":null,"url":null,"abstract":"<p><p>Histone H3 trimethylation at lysine 36 (H3K36me3) is a key chromatin modification that regulates fundamental physiological and pathological processes. In humans, SETD2 is the only known enzyme that catalyzes H3K36me3 in somatic cells and is implicated in tumor suppression across multiple cancer types. While there is considerable crosstalk between the SETD2-H3K36me3 axis and other epigenetic modifications, much remains to be understood. Here, we show that Setd2 functions as a potent tumor suppressor in a KRAS<sup>G12C</sup>-driven lung adenocarcinoma (LUAD) mouse model, and that acetylation enhances SETD2 in vitro methylation of H3K36 on nucleosome substrates. In vivo, Setd2 ablation accelerates lethality in an autochthonous KRAS<sup>G12C</sup>-driven LUAD mouse tumor model. Biochemical analyses reveal that polyacetylation of histone tails in a nucleosome context promotes H3K36 methylation by SETD2. In addition, monoacetylation exerts position-specific effects to stimulate SETD2 methylation activity. In contrast, mono-ubiquitination at various histone sites, including at H2AK119 and H2BK120, does not affect SETD2 methylation of nucleosomes. Together, these findings provide insight into how SETD2 integrates histone modification signals to regulate H3K36 methylation and highlights the potential role of SETD2-associated epigenetic crosstalk in cancer pathogenesis.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435893/pdf/","citationCount":"0","resultStr":"{\"title\":\"SETD2 suppresses tumorigenesis in a KRAS<sup>G12C</sup>-driven lung cancer model, and its catalytic activity is regulated by histone acetylation.\",\"authors\":\"Ricardo J Mack, Natasha M Flores, Geoffrey C Fox, Hanyang Dong, Metehan Cebeci, Simone Hausmann, Tourkian Chasan, Jill M Dowen, Brian D Strahl, Pawel K Mazur, Or Gozani\",\"doi\":\"10.7554/eLife.107451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone H3 trimethylation at lysine 36 (H3K36me3) is a key chromatin modification that regulates fundamental physiological and pathological processes. In humans, SETD2 is the only known enzyme that catalyzes H3K36me3 in somatic cells and is implicated in tumor suppression across multiple cancer types. While there is considerable crosstalk between the SETD2-H3K36me3 axis and other epigenetic modifications, much remains to be understood. Here, we show that Setd2 functions as a potent tumor suppressor in a KRAS<sup>G12C</sup>-driven lung adenocarcinoma (LUAD) mouse model, and that acetylation enhances SETD2 in vitro methylation of H3K36 on nucleosome substrates. In vivo, Setd2 ablation accelerates lethality in an autochthonous KRAS<sup>G12C</sup>-driven LUAD mouse tumor model. Biochemical analyses reveal that polyacetylation of histone tails in a nucleosome context promotes H3K36 methylation by SETD2. In addition, monoacetylation exerts position-specific effects to stimulate SETD2 methylation activity. In contrast, mono-ubiquitination at various histone sites, including at H2AK119 and H2BK120, does not affect SETD2 methylation of nucleosomes. Together, these findings provide insight into how SETD2 integrates histone modification signals to regulate H3K36 methylation and highlights the potential role of SETD2-associated epigenetic crosstalk in cancer pathogenesis.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.107451\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.107451","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
SETD2 suppresses tumorigenesis in a KRASG12C-driven lung cancer model, and its catalytic activity is regulated by histone acetylation.
Histone H3 trimethylation at lysine 36 (H3K36me3) is a key chromatin modification that regulates fundamental physiological and pathological processes. In humans, SETD2 is the only known enzyme that catalyzes H3K36me3 in somatic cells and is implicated in tumor suppression across multiple cancer types. While there is considerable crosstalk between the SETD2-H3K36me3 axis and other epigenetic modifications, much remains to be understood. Here, we show that Setd2 functions as a potent tumor suppressor in a KRASG12C-driven lung adenocarcinoma (LUAD) mouse model, and that acetylation enhances SETD2 in vitro methylation of H3K36 on nucleosome substrates. In vivo, Setd2 ablation accelerates lethality in an autochthonous KRASG12C-driven LUAD mouse tumor model. Biochemical analyses reveal that polyacetylation of histone tails in a nucleosome context promotes H3K36 methylation by SETD2. In addition, monoacetylation exerts position-specific effects to stimulate SETD2 methylation activity. In contrast, mono-ubiquitination at various histone sites, including at H2AK119 and H2BK120, does not affect SETD2 methylation of nucleosomes. Together, these findings provide insight into how SETD2 integrates histone modification signals to regulate H3K36 methylation and highlights the potential role of SETD2-associated epigenetic crosstalk in cancer pathogenesis.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.