细长双核金属圆柱体与DNA三向和四向连接的相互作用。

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Samuel J Dettmer, Hannah M P Stock, Michael J Hannon
{"title":"细长双核金属圆柱体与DNA三向和四向连接的相互作用。","authors":"Samuel J Dettmer, Hannah M P Stock, Michael J Hannon","doi":"10.1007/s00775-025-02123-y","DOIUrl":null,"url":null,"abstract":"<p><p>Non-canonical DNA structures play important roles in processing of the genetic code. Three-way (3WJ) and four-way (4WJ) junctions are dynamic, multi-stranded structures containing an open cavity at the centre. We have previously demonstrated that supramolecular dinuclear metallo-cylinders bind well inside 3WJ cavities, having an optimally complementary size and shape match, cationic charge to bind the DNA anion, as well as the ability to π‑stack with the branchpoint nucleobases. Herein, we show that a longer metallo-cylinder with a similar but extended central π surface binds to both 3WJ and 4WJ structures with good selectivity over double-stranded DNA. Experimental investigations, informed by molecular dynamics (MD) simulations, reveal that whilst this longer cylinder can bind 3WJs as the previously studied cylinders, the extended π surface of the cylinder now also facilitates 4WJ binding. The simulations capture two metastable 4WJ conformations -one resembling a 3WJ, and another where the extended length enables the cylinder to angle into and stabilise a rhombus-shaped 4WJ cavity. The ability to tune the structure of supramolecular assemblies is important for targeting different DNA structures with varying specificity, and in this work, we demonstrate the usefulness of overall length as a parameter for modulating DNA binding.</p>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions of elongated dinuclear metallo-cylinders with DNA three-way and four-way junctions.\",\"authors\":\"Samuel J Dettmer, Hannah M P Stock, Michael J Hannon\",\"doi\":\"10.1007/s00775-025-02123-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-canonical DNA structures play important roles in processing of the genetic code. Three-way (3WJ) and four-way (4WJ) junctions are dynamic, multi-stranded structures containing an open cavity at the centre. We have previously demonstrated that supramolecular dinuclear metallo-cylinders bind well inside 3WJ cavities, having an optimally complementary size and shape match, cationic charge to bind the DNA anion, as well as the ability to π‑stack with the branchpoint nucleobases. Herein, we show that a longer metallo-cylinder with a similar but extended central π surface binds to both 3WJ and 4WJ structures with good selectivity over double-stranded DNA. Experimental investigations, informed by molecular dynamics (MD) simulations, reveal that whilst this longer cylinder can bind 3WJs as the previously studied cylinders, the extended π surface of the cylinder now also facilitates 4WJ binding. The simulations capture two metastable 4WJ conformations -one resembling a 3WJ, and another where the extended length enables the cylinder to angle into and stabilise a rhombus-shaped 4WJ cavity. The ability to tune the structure of supramolecular assemblies is important for targeting different DNA structures with varying specificity, and in this work, we demonstrate the usefulness of overall length as a parameter for modulating DNA binding.</p>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"Journal of Biological Inorganic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1007/s00775-025-02123-y\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-025-02123-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非规范DNA结构在遗传密码的处理中起着重要作用。三向(3WJ)和四向(4WJ)结是动态的,多链结构,在中心含有一个开放的腔。我们之前已经证明,超分子双核金属圆柱体在3WJ腔内结合良好,具有最佳的互补大小和形状匹配,阳离子电荷结合DNA阴离子,以及与分支点核碱基π堆积的能力。在此,我们证明了具有相似但扩展的中心π表面的更长的金属圆柱体与3WJ和4WJ结构结合,对双链DNA具有良好的选择性。通过分子动力学(MD)模拟的实验研究表明,虽然这个更长的圆柱体可以像之前研究的圆柱体一样结合3wj,但圆柱体的扩展π表面现在也有利于4WJ的结合。模拟捕获了两种亚稳态的4WJ构象——一种类似于3WJ构象,另一种是延长的长度使圆柱体能够倾斜并稳定菱形的4WJ腔。调节超分子组装体结构的能力对于以不同的特异性靶向不同的DNA结构非常重要,在这项工作中,我们证明了总长度作为调节DNA结合参数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions of elongated dinuclear metallo-cylinders with DNA three-way and four-way junctions.

Non-canonical DNA structures play important roles in processing of the genetic code. Three-way (3WJ) and four-way (4WJ) junctions are dynamic, multi-stranded structures containing an open cavity at the centre. We have previously demonstrated that supramolecular dinuclear metallo-cylinders bind well inside 3WJ cavities, having an optimally complementary size and shape match, cationic charge to bind the DNA anion, as well as the ability to π‑stack with the branchpoint nucleobases. Herein, we show that a longer metallo-cylinder with a similar but extended central π surface binds to both 3WJ and 4WJ structures with good selectivity over double-stranded DNA. Experimental investigations, informed by molecular dynamics (MD) simulations, reveal that whilst this longer cylinder can bind 3WJs as the previously studied cylinders, the extended π surface of the cylinder now also facilitates 4WJ binding. The simulations capture two metastable 4WJ conformations -one resembling a 3WJ, and another where the extended length enables the cylinder to angle into and stabilise a rhombus-shaped 4WJ cavity. The ability to tune the structure of supramolecular assemblies is important for targeting different DNA structures with varying specificity, and in this work, we demonstrate the usefulness of overall length as a parameter for modulating DNA binding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Inorganic Chemistry
Journal of Biological Inorganic Chemistry 化学-生化与分子生物学
CiteScore
5.90
自引率
3.30%
发文量
49
审稿时长
3 months
期刊介绍: Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信