{"title":"耀斑绳通量模型中准周期辐射脉动的性质","authors":"A. A. Solov’ev","doi":"10.1134/S106377292570194X","DOIUrl":null,"url":null,"abstract":"<p>Rope flux models of solar flares associate the phenomenon of quasi-periodic pulsations of flare radiation with a parametric catastrophe that occurs when the top of a twisted magnetic loop enters the corona. A sharp decrease in external pressure leads to the longitudinal magnetic field of a force-free flux rope tending to zero on the magnetic surface where the current changes sign, and the density of the azimuthal current and the force-free parameter begin to grow indefinitely near this surface, approaching a break. The current velocity of electrons here will inevitably exceed the speed of ion sound, and plasma instability will arise. Scattering of electrons on ion-acoustic plasmons will sharply decrease the plasma conductivity and cause rapid, flare dissipation of the magnetic energy of the rope, i.e., decrease in the amplitude of the field and currents and expansion of the rope cross-section. This is how the first peak of the flare radiation will be formed. In this case, the torque applied to each section of the rope will be greatly weakened in the energy release region. In equilibrium, the torque should be the same along the entire length of the loop, so there will be a transfer of the azimuthal flux by Alfvén waves from the loop legs to the top. Alignment of the torque along the rope axis will return the rope to its original state, after which the second peak of the flare radiation is formed, and the process is repeated several times until the reserve of free magnetic energy associated with the currents in the entire loop decreases significantly. The oscillations of the rope cross-section accompanying the peaks of its radiation represent a specific type of fluctuations of a system with time-varying rigidity: in them the magnetic field intensity, providing the restoring force, changes greatly. Calculation of such oscillations allows achieving not only qualitative but also quantitative correspondence between the theoretical results and observational data.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"69 7","pages":"622 - 632"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature of Quasi-Periodic Radiative Pulsations in the Rope Flux Models of Flares\",\"authors\":\"A. A. Solov’ev\",\"doi\":\"10.1134/S106377292570194X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rope flux models of solar flares associate the phenomenon of quasi-periodic pulsations of flare radiation with a parametric catastrophe that occurs when the top of a twisted magnetic loop enters the corona. A sharp decrease in external pressure leads to the longitudinal magnetic field of a force-free flux rope tending to zero on the magnetic surface where the current changes sign, and the density of the azimuthal current and the force-free parameter begin to grow indefinitely near this surface, approaching a break. The current velocity of electrons here will inevitably exceed the speed of ion sound, and plasma instability will arise. Scattering of electrons on ion-acoustic plasmons will sharply decrease the plasma conductivity and cause rapid, flare dissipation of the magnetic energy of the rope, i.e., decrease in the amplitude of the field and currents and expansion of the rope cross-section. This is how the first peak of the flare radiation will be formed. In this case, the torque applied to each section of the rope will be greatly weakened in the energy release region. In equilibrium, the torque should be the same along the entire length of the loop, so there will be a transfer of the azimuthal flux by Alfvén waves from the loop legs to the top. Alignment of the torque along the rope axis will return the rope to its original state, after which the second peak of the flare radiation is formed, and the process is repeated several times until the reserve of free magnetic energy associated with the currents in the entire loop decreases significantly. The oscillations of the rope cross-section accompanying the peaks of its radiation represent a specific type of fluctuations of a system with time-varying rigidity: in them the magnetic field intensity, providing the restoring force, changes greatly. Calculation of such oscillations allows achieving not only qualitative but also quantitative correspondence between the theoretical results and observational data.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":\"69 7\",\"pages\":\"622 - 632\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106377292570194X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106377292570194X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Nature of Quasi-Periodic Radiative Pulsations in the Rope Flux Models of Flares
Rope flux models of solar flares associate the phenomenon of quasi-periodic pulsations of flare radiation with a parametric catastrophe that occurs when the top of a twisted magnetic loop enters the corona. A sharp decrease in external pressure leads to the longitudinal magnetic field of a force-free flux rope tending to zero on the magnetic surface where the current changes sign, and the density of the azimuthal current and the force-free parameter begin to grow indefinitely near this surface, approaching a break. The current velocity of electrons here will inevitably exceed the speed of ion sound, and plasma instability will arise. Scattering of electrons on ion-acoustic plasmons will sharply decrease the plasma conductivity and cause rapid, flare dissipation of the magnetic energy of the rope, i.e., decrease in the amplitude of the field and currents and expansion of the rope cross-section. This is how the first peak of the flare radiation will be formed. In this case, the torque applied to each section of the rope will be greatly weakened in the energy release region. In equilibrium, the torque should be the same along the entire length of the loop, so there will be a transfer of the azimuthal flux by Alfvén waves from the loop legs to the top. Alignment of the torque along the rope axis will return the rope to its original state, after which the second peak of the flare radiation is formed, and the process is repeated several times until the reserve of free magnetic energy associated with the currents in the entire loop decreases significantly. The oscillations of the rope cross-section accompanying the peaks of its radiation represent a specific type of fluctuations of a system with time-varying rigidity: in them the magnetic field intensity, providing the restoring force, changes greatly. Calculation of such oscillations allows achieving not only qualitative but also quantitative correspondence between the theoretical results and observational data.
期刊介绍:
Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.