量子谐波分析中线性正则变换的表示理论框架

IF 0.7 Q2 MATHEMATICS
Ishtaq Ahmad
{"title":"量子谐波分析中线性正则变换的表示理论框架","authors":"Ishtaq Ahmad","doi":"10.1007/s13370-025-01377-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Linear Canonical Transform (LCT) serves as a powerful generalization of the Fourier and fractional Fourier transforms, with significant implications in signal processing, optics, and quantummechanics. This paper develops a novel representation-theoretic framework for the LCT by leveraging the unitary dual of the Heisenberg group and the metaplectic representation of the symplectic group. Beyond recovering known uncertainty principles, we present refined inequalities that explicitly depend on the LCT parameter matrix and derive new structural results for the spectral decomposition of LCT operators. In particular, we provide a distributional spectral analysis for degenerate LCT cases (<span>\\(b = 0\\)</span>), introduce entropic uncertainty bounds tailored to the LCT domain, and propose a group-theoretic formulation of sparsity constraints. These findings significantly extend classical results and offer a deeper understanding of the LCT in both theoretical and applied contexts. We conclude with suggestions for quantum state manipulation via LCTs and numerical illustrations that bridge abstract theory with practical computation.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation-theoretic framework for the linear canonical transform in quantum harmonic analysis\",\"authors\":\"Ishtaq Ahmad\",\"doi\":\"10.1007/s13370-025-01377-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Linear Canonical Transform (LCT) serves as a powerful generalization of the Fourier and fractional Fourier transforms, with significant implications in signal processing, optics, and quantummechanics. This paper develops a novel representation-theoretic framework for the LCT by leveraging the unitary dual of the Heisenberg group and the metaplectic representation of the symplectic group. Beyond recovering known uncertainty principles, we present refined inequalities that explicitly depend on the LCT parameter matrix and derive new structural results for the spectral decomposition of LCT operators. In particular, we provide a distributional spectral analysis for degenerate LCT cases (<span>\\\\(b = 0\\\\)</span>), introduce entropic uncertainty bounds tailored to the LCT domain, and propose a group-theoretic formulation of sparsity constraints. These findings significantly extend classical results and offer a deeper understanding of the LCT in both theoretical and applied contexts. We conclude with suggestions for quantum state manipulation via LCTs and numerical illustrations that bridge abstract theory with practical computation.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01377-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01377-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

线性正则变换(LCT)是傅里叶变换和分数傅里叶变换的有力推广,在信号处理、光学和量子力学中具有重要意义。利用海森堡群的酉对偶和辛群的元表示,提出了一种新的LCT表示理论框架。除了恢复已知的不确定性原理,我们提出了明确依赖于LCT参数矩阵的精炼不等式,并为LCT算子的谱分解导出了新的结构结果。特别是,我们提供了退化LCT情况的分布谱分析(\(b = 0\)),引入了适合LCT域的熵不确定性界限,并提出了稀疏性约束的群论公式。这些发现大大扩展了经典结果,并在理论和应用背景下对LCT有了更深入的理解。最后,我们提出了利用lct进行量子态操纵的建议,并给出了将抽象理论与实际计算相结合的数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation-theoretic framework for the linear canonical transform in quantum harmonic analysis

The Linear Canonical Transform (LCT) serves as a powerful generalization of the Fourier and fractional Fourier transforms, with significant implications in signal processing, optics, and quantummechanics. This paper develops a novel representation-theoretic framework for the LCT by leveraging the unitary dual of the Heisenberg group and the metaplectic representation of the symplectic group. Beyond recovering known uncertainty principles, we present refined inequalities that explicitly depend on the LCT parameter matrix and derive new structural results for the spectral decomposition of LCT operators. In particular, we provide a distributional spectral analysis for degenerate LCT cases (\(b = 0\)), introduce entropic uncertainty bounds tailored to the LCT domain, and propose a group-theoretic formulation of sparsity constraints. These findings significantly extend classical results and offer a deeper understanding of the LCT in both theoretical and applied contexts. We conclude with suggestions for quantum state manipulation via LCTs and numerical illustrations that bridge abstract theory with practical computation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信