揭示Banach代数中线性铅笔的拟逆

IF 0.7 Q2 MATHEMATICS
Hassen Khlif
{"title":"揭示Banach代数中线性铅笔的拟逆","authors":"Hassen Khlif","doi":"10.1007/s13370-025-01374-x","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the essential spectrum of linear pencils in Banach algebras, particularly their behavior under ideal perturbations. Building upon the foundational work of J. Shapiro and M. Snow in [The Fredholm spectrum of the sum and product of two operators, Transactions of the American Mathematical Society, 191 (1974), 387-393] on the Fredholm spectrum in Banach spaces, this study introduces novel characterizations of quasi-inverses and their role in spectral analysis. By leveraging these characterizations, we derive conditions ensuring that the essential spectrum of a linear pencil is confined within a specific sector of the complex plane. Our findings establish a refined connection between Fredholm theory and the algebraic structure of Banach algebras, offering both theoretical advancements and geometric insights into spectral containment. These results extend existing frameworks and open avenues for exploring spectral properties in more general algebraic settings with applications in operator theory and differential equations.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling quasi inverses of linear pencils in Banach algebra\",\"authors\":\"Hassen Khlif\",\"doi\":\"10.1007/s13370-025-01374-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the essential spectrum of linear pencils in Banach algebras, particularly their behavior under ideal perturbations. Building upon the foundational work of J. Shapiro and M. Snow in [The Fredholm spectrum of the sum and product of two operators, Transactions of the American Mathematical Society, 191 (1974), 387-393] on the Fredholm spectrum in Banach spaces, this study introduces novel characterizations of quasi-inverses and their role in spectral analysis. By leveraging these characterizations, we derive conditions ensuring that the essential spectrum of a linear pencil is confined within a specific sector of the complex plane. Our findings establish a refined connection between Fredholm theory and the algebraic structure of Banach algebras, offering both theoretical advancements and geometric insights into spectral containment. These results extend existing frameworks and open avenues for exploring spectral properties in more general algebraic settings with applications in operator theory and differential equations.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01374-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01374-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Banach代数中线性铅笔的本质谱,特别是它们在理想扰动下的行为。在J. Shapiro和M. Snow关于Banach空间中的Fredholm谱的基础工作[两个算子的和和积的Fredholm谱,Transactions of the American Mathematical Society, 191(1974), 387-393]的基础上,本研究引入了准逆的新特征及其在谱分析中的作用。通过利用这些特征,我们得出了确保线性铅笔的基本光谱被限制在复平面的特定扇形内的条件。我们的研究结果在Fredholm理论和Banach代数结构之间建立了一个精细的联系,为光谱遏制提供了理论进步和几何见解。这些结果扩展了现有的框架,并为在算子理论和微分方程的应用中探索更一般的代数设置中的谱性质开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling quasi inverses of linear pencils in Banach algebra

We investigate the essential spectrum of linear pencils in Banach algebras, particularly their behavior under ideal perturbations. Building upon the foundational work of J. Shapiro and M. Snow in [The Fredholm spectrum of the sum and product of two operators, Transactions of the American Mathematical Society, 191 (1974), 387-393] on the Fredholm spectrum in Banach spaces, this study introduces novel characterizations of quasi-inverses and their role in spectral analysis. By leveraging these characterizations, we derive conditions ensuring that the essential spectrum of a linear pencil is confined within a specific sector of the complex plane. Our findings establish a refined connection between Fredholm theory and the algebraic structure of Banach algebras, offering both theoretical advancements and geometric insights into spectral containment. These results extend existing frameworks and open avenues for exploring spectral properties in more general algebraic settings with applications in operator theory and differential equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信