伪厄米量子系统的不确定性关系

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Boubakeur Khantoul, Bilel Hamil, Amar Benchikha
{"title":"伪厄米量子系统的不确定性关系","authors":"Boubakeur Khantoul,&nbsp;Bilel Hamil,&nbsp;Amar Benchikha","doi":"10.1007/s12648-025-03733-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates pseudo-Hermitian quantum mechanics, where the Hamiltonian satisfies a modified Hermiticity condition. We extend the uncertainty relation for such systems, demonstrating its equivalence to the standard Hermitian case within a pseudo-Hermitian inner product. Analytical solutions to the time-dependent Schrödinger equation with a linearly evolving potential are derived. Furthermore, we show that the uncertainty relation for position and momentum remains real and greater than <span>\\(\\frac{1}{2}\\)</span>, highlighting the significance of non-Hermitian systems in quantum mechanics.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 11","pages":"4239 - 4244"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty relation for pseudo-Hermitian quantum systems\",\"authors\":\"Boubakeur Khantoul,&nbsp;Bilel Hamil,&nbsp;Amar Benchikha\",\"doi\":\"10.1007/s12648-025-03733-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates pseudo-Hermitian quantum mechanics, where the Hamiltonian satisfies a modified Hermiticity condition. We extend the uncertainty relation for such systems, demonstrating its equivalence to the standard Hermitian case within a pseudo-Hermitian inner product. Analytical solutions to the time-dependent Schrödinger equation with a linearly evolving potential are derived. Furthermore, we show that the uncertainty relation for position and momentum remains real and greater than <span>\\\\(\\\\frac{1}{2}\\\\)</span>, highlighting the significance of non-Hermitian systems in quantum mechanics.</p></div>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"99 11\",\"pages\":\"4239 - 4244\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12648-025-03733-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-025-03733-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了伪厄米量子力学,其中哈密顿量满足一个修正的厄米条件。我们推广了这类系统的不确定性关系,证明了它在伪厄米内积内与标准厄米情况的等价性。导出了具有线性演化势的时间相关Schrödinger方程的解析解。此外,我们证明了位置和动量的不确定性关系仍然是真实的,并且大于\(\frac{1}{2}\),突出了非厄米系统在量子力学中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty relation for pseudo-Hermitian quantum systems

This study investigates pseudo-Hermitian quantum mechanics, where the Hamiltonian satisfies a modified Hermiticity condition. We extend the uncertainty relation for such systems, demonstrating its equivalence to the standard Hermitian case within a pseudo-Hermitian inner product. Analytical solutions to the time-dependent Schrödinger equation with a linearly evolving potential are derived. Furthermore, we show that the uncertainty relation for position and momentum remains real and greater than \(\frac{1}{2}\), highlighting the significance of non-Hermitian systems in quantum mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信